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Problem description
HSI imaging for inter-operative visualization aid brain tumor removal

21 operations, VNIR & NIR
images, 4-6 images / op.

In-vivo cubes of brain tissue (tumor
in view during surgery)

Ex-vivo images of tumor.

Plastic rings in each In-vivo image
show locations containing possible
tumor and healthy tissue.

Tissue samples within markers are
verified by pathology to confirm
presence of tumor.
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Outputs and Problems

Outputs Expected:

Segment hyper-spectral images to detect tumor pixels and validate
with ring markers.

Visualization of brain tissue structure as interoperative aid

Extract spectral signature of tumor tissues

Issues:

No labels/ground truth nor meta data about tumors.

Varying lighting, push-broom sensor vibrations.

Varying tumor spectrum across patients and tumor types.

Specular reflections prominent in many images.
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In-vivo and Ex-vivo Images

Figure : Two sets of HSI images (shown in RGB) captured during operation. The first row (a-d) consist of images taken
during a surgical procedure before the extraction of tumor. The second row (e-i) consists of images taken after the extraction of
the tumor. The resected tumor is placed on a cotton tissue and is captured again by the VNIR camera. (e-i) images serve as a
weak ground truth, that ensure us tumor tissue in a localized window.
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Overview
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Linear Mixing Model [10], [9]

X (:, j) =
∑

i=1:r wi · hi (j)

Constraints:

At pixel j we require
∑

i hi (j) = 1.

W ,H ≥ 0
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Non-negative matrix factorization(NMF) [3]

Low rank approximation of a matrix X ∈ Rp×n

X = WH which minimizes ‖X −WH‖2
F

with W ∈ Rp×r ,H ∈ Rr×n

Separable NMF [4] : “Most” pixels are dominated mostly by one
end-member. This is called the pure-pixel condition implies
X (:, j) = W (:, k) as opposed to mixed pixels where
X (:, j) = W ∗ H(:, j).
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Hierarchical rank-2 NMF clustering [6]

Starts with one cluster containing all pixels in image, At each step:

Ei = ‖X (:,Ki )‖2
F − σ2

1(X (:,Ki ))

Selects cluster i with largest approximation error Ei

Splits selected cluster by rank-2 SVD
Representative pure-pixel for a cluster are ones with minimal Mean
removed spectral angle(MRSA) w.r.t leading eigen vector.
Stop once r -clusters are reached.
Non-negative least-sqaures to calculate endmembers

Figure : H2NMF Clustering hierarchy
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Training Set (Xtrain, ytrain = Ck)

Figure : H2NMF clustering on the training set Xtrain which consists of input ex-vivo tumor tissue HSI cube and on
materials. We in this case the ring on a cotton, and a cable in scene with open cranium and healthy tissues. This labeling with
the corresponding HSI cubes serves as the training set for constructing the random forest classifier.
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Classification of test images Xtest
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Classification of test images Xtest
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Specular Reflection

HSI-pixel captures source lighting luminance instead of material
reflectance due to total, partial or complex reflections from the thin
films (specular) on tissue surface.

This is not restricted to the optical range.
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Other Issues

Spectral similarity: Tumors Vs Normal Tissue :
Differences between malignant and benign tissues in human breast tissues, have been attributed to the metabolic
difference due to the presence of more oxy-hemoglobin, lipids and water [8]. Similar references for canine mammary
tumors [12].

Discriminatory feature : Slopes of spectrum (at pixel) between 510, 530 nm were most discriminatory for ovaries, while
630-900 nm for kidneys [13], [11].

Due the lack of information during this study of the actual spectrum of tumor tissues we are unable to provide a a
discriminatory feature, and thus supervised division of subspace.

Spectrum variation sources :
Age, hormonal status, introduce high inter-patient variability in NIR absorption spectra and complicate diagnosis when
only the magnitude of tissue absorption is used [2].

Change in illumination and movement of push-broom sensor

Structure : Solid tumors are composed of two distinct but interdependent compartments [5]: malignant cells themselves
(parenchyma), the supporting connective tissue (stroma).

Unlike the normal vasculature, tumor vessels are not arranged in a hierarchical pattern but are instead irregularly spaced
and structurally heterogeneous.
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Conclusion

Spectral discrimination of tumor vs normal tissues not possible.

Create (None yet) visual appearance models for tumors on tissue
surface.

Texture based features : granulometry?

Future work :

Clearer problem formulation in terms of dimensionality reduction +
spatial convolutional features [1].

Use abundance maps for spatial features.

Ongoing work on spatial interpolating markers by K-NN filtering.
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The End
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H2NMF Algorithm [6]

Xtrain = {Ij} ∪ {Ei}, i , j ∈ I × J

I , J are the number of in-vivo and ex-vivo operations

E (i) = σ2
1(X (:,K1

i )) + σ2
1(X (:,K2

i ))− σ2
1(X (:,Ki ))

Input: Input training set Xtrain ∈ Rp×n
+

Output: Set of disjoint clusters Ki , 1 ≤ i ≤ r with ∪iKi = (1, 2, ..., n)
1 Initialize K1 ← {1, 2, ..., n} and Ki ← ∅, k ← 1 for 2 ≤ i ≤ r
2 Initialize Clusters (K1

1,K2
1)← splitting(Xtrain,K1)

3 while k < r do
4 j ← cluster with largest error E
5 K1

j ,K2
j ← splitting(X ,Kj )

6 Kj ←,Kk ← K2
j

7 k ← k + 1
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Splitting

Input: Ex-vivo Cubes X ∈ Rp×m
+ , K ⊂ {1, 2, ...n}

Output: K1,K1 split cluster indices, K = K1 ∪ K2

1 [W ,H] = rank2NMF(X (:,K)) /* Projection onto 2-d cone */

2 x(i) = H(1,i)
H(1,i)+H(2,i)

3 Compute split parameter δ∗

4 K1 = {K(i)|x(i) ≥ δ∗}
5 K2 = {K(i)|x(i) < δ∗}

The 2-d cone on to which all columns of the input matrix are projected (figure repeated from [6]. On this cone δ∗ decides the

binary cluster. δ is chosen to trade-off between uniformity of cluster size and homogenity of clusters.
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H2NMF Algorithm [6]

Each splitting step produces one new endmember
Leaves are Rank-1 submatrices containing “pure” pixels.
Endmembers are calculated by calculating best rank-1 approximation
X (:,K) = ukv

T
k (by approx. svd)

Representative pure-pixels are ones with minimal Mean removed
spectral angle(MRSA) w.r.t uk

φ(x, y) = 1
π arccos

(
(x−x̄)T (y−ȳ)
‖x−x̄‖2‖y−ȳ‖2

)
∈ [0, 1]

Abundances : by Non-negative least squares (NNLS).
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Unsupervised Clustering

Progressively divide pixels until r-leaves with minimal approximation
error are obtained.
Subspace tree is used to train a Random forest with cluster centers to
provide robustness to variation in centroids.
BIOIMAGING 2016 [7].

Figure : H2NMF Clustering at level r = 12.
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Clustering Results

Figure : Two different levels of clustering.
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In-vivo and Ex-vivo Images

Figure : In-vivo scenes with their respective markers pair of synthetic rings. These rings are identifiable easily with the
H2NMF clustering. One ring is assure to surround a cancerous tissue, while the other a healthy one. In such tests one still has
no accurate estimate of the depth of penetration of VNIR rays as well as the fact that the tissue on the surface is cancerous.
This is tough to ensure during critical surgeries.
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