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Overview

1 Optimal Cut
2 Conditions
3 Energetic Lattice
4 Braids
5 Future directions

This is part of my thesis [9].
In this talk i will present

Energetic lattice : theorhetical basis
for dynamical programming (DP)

Braids of Partitions : Family
preserving energetic ordering and
DP substructure

I will not present

Constrained optimization on
hierarchies: global & local
constraints [9], [18]

Ground truth energies, net
openings, ground truth fusion :
[10], [11]
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Problem Formulation

E

S1 S2

a b c d e
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Problems :

Tractable
solution ?

Uniqueness
conditions ?

Larger Family
of partitions ?

minimize
π∈Π(E ,H)

∑
S∈π

ω(S)
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Optimization on hierarchies

Decision tree cost-complexity
pruning [4]

Rate-distortion minimization,
level line selection. [16], [3]

Guigues Scale-sets/λ-cuts [8]

Given : Hierarchy H, Energies ωφ, ω∂ : S → R.

Calculate the nested subtrees or hierarchy of partitions with increasing
scale parameter λ.
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Definitions

Partitions

Non-void mutually disjoint subsets of space E whose union restitutes E

π = {Si ⊆ E | ∪i Si = E , ∀i , j Si ∩ Sj = ∅} (1)

Partial Partitions [14]

Partition restricted to subset S ⊂ E :

π(S) = {Ai | Ai ⊆ S , ∀i , j Ai ∩ Aj = ∅} = π u {S} (2)

where S = ∪iAi is called the support of π(S).
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Refinement ordering and partition lattice

Set of all partitions on space E fors a complete lattice (unique
supremum/infimum) for the refinement ordering. If πi ≤ πj , each class of
Si ∈ πi including a point x ∈ E will be included in the class Sj ∈ πj

including x .

Figure : Refinement ordering.

πi ≤ πj Si (x) ⊆ Sj (x) (3)
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Hierarchy of Partitions (HOP)

An indexed family of partitions : {πi , i ∈ I ⊂ Z}
A Hierarchy H is :

H = {πi , i ∈ I} s.t. ∀i ≤ k =⇒ πi ≤ πk , I ⊂ Z

π0 is the finest partition in the family and is called the leaves.

π0 contains a finite number of leaves.

π0 ≤ π1 ≤ π2

Elements S ∈ π, π ∈ H are called the classes of the hierarchy H.
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Cuts

E

S1 S2

a b c d e

E

S1 S2
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E

S1 S2

c d e

A Cut is a partition created with classes S ∈ H.

It can also be seen as the set of subtrees possible from the original
hierarchy/tree.4

Examples : (t is the disjoint union operator.)

π0 = a t b t c t d t e
π = a t b t S2

π = S1 t c t d t e

Π(E ,H) : family of all cuts possible using classes from H.

Kiran BANGALORE RAVI (CRISTaL) Energetic lattices and braids March 22, 2017 8 / 21



Energies

The family of partial partitions D or PPs is the set of all partial
partitions possible of E .

The energy is a value associated with each partial partition

ω : PPs→ R (4)

To obtain the final energy of π(S) a partial partition we need a
composition function/law :

ω(π(S)) =
∑

Ai∈π(S) ω(Ai ) (5)
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Dynamic Program

π∗(S) =

{
{S}, if ω(S) ≤

∑
(ω(π∗(a))), a ∈ π(S)⊔

a∈π(S) π
∗(a), otherwise
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Dynamic Program

π∗(S) =

{
{S}, if ω(S) ≤

∑
(ω(π∗(a))), a ∈ π(S)⊔

a∈π(S) π
∗(a), otherwise

Can we do other operations than additive ?
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Dynamic Program

π∗(S) =

{
{S}, if ω(S) ≤

∑
(ω(π∗(a))), a ∈ π(S)⊔

a∈π(S) π
∗(a), otherwise

What conditions preserve the DP ?
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Dynamic Program

π∗(S) =

{
{S}, if ω(S) ≤

∑
(ω(π∗(a))), a ∈ π(S)⊔

a∈π(S) π
∗(a), otherwise

Only local comparisions performed in DP, though we claim global
optimum.
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Energy composition

Additive composition : Supremum composition :

Additive :

π∗(S) =

{
{S}, if ω(S) ≤

∑
a∈π(S) ω(π∗(a))⊔

a∈π(S) π
∗(a), otherwise

S more energetic than all its descendants.

ω(S∗) ≥
∨
π(S) ω(Ti )
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Generalized Minkowski composition

ω(π(S), α) =

[∑
children ω(u)α

] 1
α

Additive: [4],[16],[8]

Supremum, Dominant Ancestor: [19],[20],[21]

Minkowski parameter: [15]

Max-pooling type, alternating compositions
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h-increasingness on HOP

ω(π1(S)) ≤ ω(π2(S)) =⇒ ω(π1(S) t π0) ≤ ω(π2(S) t π0) (6)

h-increasingness provides the DP sub-structure necessary for optimum [17]
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Singular eneriges

10

3 5

1.5 1.5 1 3 1

∀ π(S) ∈ Π(S), ω({S}) 6= ω(π(S))}

Various authors indirectly use the singularity for a unique solution.
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Energetic Ordering

π �ω π′ ⇔ ∀S ∈ π ∨ π′ we have ω(π u {S}) ≤ ω(π′ u {S})

One never evaluates energy of a partition during the dynamic program
but only of partial partitions.

The energetic lattice ( �ω,∨ω ) derives from the energetic order.

Existence of unique solution when ω singular.

local minimum =⇒ global minimum.

Given H, ω we have an energetic lattice iff ω is singular.
h-increasingess
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Segmentation Example

luminance fidelity term
ωϕ(T ) =

∫
T ||l(x)− µ(T )||2 dx

Initial image

chrominance fidelity term
ωϕ(T ) =

∑
i

∫
T ||ci (x)− µi (T )||2 dx

ω(π(S), λ) =
∑

k ωϕ(Tk ) + λω∂(Tk )

Contour length : ω∂(Tk ) = ∂Tk

λ was fixed to have same coding
cost
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Braids of Partitions (BOP)

Pair-wise Refinement supremum are hierarchical [12]

∀ π1, π2 ∈ B ⇒ π1 ∨ π2 ∈ Π(H,E ) \ {E}

All properties of
optimiszation of the
hierarchies extend to braids:

h-increasingness

dynamic programing

energetic lattice
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h-increasingness for Braids

ω(π1(S)) ≤ ω(π2(S)) ⇒ ω(π1(S) t π0) ≤ ω(π2(S) t π0)
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Why Braids ?

Uncertain boundaries =⇒ mutliple partial partitions are optimal.

Multivariate energy minimization, partial partitions across
components.

Accomodates variablity in Human & Machine segmenations.

Better DP infimum & compatible with Energetic Lattice.
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Future work

Given a hierarchy of partitions that are totally not ordered by
refinement, i.e. H = {πi , i ∈ I} s.t. ∀i , j , k, either πi ≤ πj ≤ πk ,
πi ≥ πj ≤ πk , πi ≤ πj ≥ πk , πi ≥ πj ≥ πk . How do formulate the DP
to achieve the global optima ? This is possible in algorithms that
perform local refinements, but always working from a fixed partition
lattice.

Understanding the optimal cut and pruning problems in ensembles.
Recent paper on Cost-complexity pruning of Random Forests explores
this subject. [13]

Maximally weighted independent set as segmentation follows a similar
dynamic program [5]

Project under study : Multi-class graph-cuts to optimize energies
using the α-extension algorithm [7].
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Thank you!
On to Hyperspectral imaging
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Braid Examples

UCM Hierarchy : [2]
Stochastic Watershed : [1]
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Braid Examples

Input image Area & Vol. watersheds [6] Monitor Hierarchy

Minimum Spanning Tree (MST) Braid, B5 = {π ∈ Π(E ) | ‖π‖ = 5}
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Perturning Hierarchies : Searching for better optimum
Random re-compositions on hierarchies

For πi ∈ H
For S ∈ πi

if(ω(πq(S) < π∗p(S))
π∗(S) = πq(S)

else
recompose new children

For every class of parent partition πp we regroup children in πl at random
to search possible finer parent level πq
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Example
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Example
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Example

Observation

Perturbation and search is λ-dependent.

Locally random perturbations. (More evoled versions possible)

Refinement order respected.
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