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Streaming anomaly detection

I x (t ) are observations over time t where new data arrives over time t .
I Problem : Window x (t ), [t : t − p + 1] which “deviates” from normal behavior.
I Motivation : How to become invariant to the window-size/scale of

pseudo-periodic structure in x (t ) ?

Streaming multi-scale Lag-matrix construction

Xp
t = [xt,xt−1, . . . ,xt−p+1]

T ∈ Rp

Streaming PCA

I Dimensionality reduction for time series lag embedding
I Recursive update for principal subspace
I Linear Principal Component Analysis criterion : Given Xp ∈ RT×p, wp is

defined as 1-D projection capturing most of the energy of samples :
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Multiscale streaming PCA

Algorithm 1 Streaming PCA
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end for
end for
return ααα ∈ RT×J

Given x (t ) ∈ R for t = 1 : T
I We evaluate the lag-matrix
X ∈ RT×p where p = 2j.
I For each Xt ∈ Rp we perform a

change of basis Zt := ΦTXt
I H refers to a unitary tx. that can
. localize a deviation from the

local mean and variations.
. Preserve the variance.
I Haar transform Φ = H :

H2N =
1√
2

[
HN ⊗ [1,1]
IN ⊗ [1,−1]

]

Hierarchical (Approximation) PCA
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t . The principal direc-
tion is updated a�er this step.
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AUC performances across di�erent aggregation methods

Performance Evaluation : Area under the receiver operators
characteristics curve (AUC) (FPR vs TPR), 0 (worst) & 1 (perfect).

E�ect of 2nd iteration of Streaming PCA

Least correlated scale Vs 2nd iteration of Streaming PCA :
I Least correlated scale and 2nd iteration of streaming PCA decorrelates the

reconstruction error across scales.
I The least correlated scale performs be�er when there is a single scale

structure across time series. Second iteration performs be�er when there are
multiple scales.

Future work

I Understand bounds on reconstruction error ααα (t ) for Streaming PCA.
I Be�er base-line by comparing with streaming covariance estimation.
I Probabilistic anomaly score using gaussian neg-log score.
I Recursively calculable multi-scale time series representation HTXt to model

long range dependencies.
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