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“Thinking evolves the objective. All the three worlds exist through thinking.

The Kosmos melts away on its dissolution. This thinking should carefully be diagnosed.”

- Yogavasishtha (Ramacharka, The spirit of the Upanishads)

Dedicated to my Guru Jean, Marie Françoise

and my Parents Ravi and Kalpana.

“Did you think I too will

Spend my days in mundane search of food,

Telling petty tales and gossips,

Worrying myself with unwanted thoughts,

Hurting others by my selfish acts,

Turn senile old man with grey hair

To end up as fodder to the

relentless march of timeless Death,

As yet another faceless man?”

- Mahakavi Bharathi



Abstract

Hierarchical segmentation has been a model which both identifies with the construct of

extracting a tree structured model of the image, while also interpreting it as an opti-

mization problem of the optimal scale selection. Hierarchical processing is an emerging

field of problems in computer vision and hyperspectral image processing community, on

account of its ability to structure high-dimensional data.

Chapter 1 discusses two important concepts of Braids and Energetic lattices. A braid

of partitions is a richer hierarchical partition model that provides multiple locally non-

nested partitioning, while being globally a hierarchical partitioning of the space. The

problem of optimization on hierarchies and further braids are non-tractable due the

combinatorial nature of the problem. We provide conditions, of h-increasingness, scale-

increasingness on the energy defined on partitions, to extract unique and monotonically

ordered minimal partitions.

Furthermore these conditions are found to be coherent with the Braid structure to

perform constrained optimization on hierarchies, and more generally Braids. Chapter 2

demonstrates the Energetic lattice, and how it generalizes the Lagrangian formulation

of the constrained optimization problem on hierarchies.

Finally in Chapter 3 we apply the method of optimization using energetic lattices to the

problem of extraction of segmentations from a hierarchy, that are proximal to a ground

truth set.

Chapter 4 we show how one moves from the energetic lattice on hierarchies and braids,

to a numerical lattice of Jordan Curves which define a continuous model of hierarchical

segmentation. This model enables also to compose different functions and hierarchies.

Chapter 5 compiles the scale-climbing algorithms by Guigues and Salembier-Garrido,

over the hierarchies of partitions, and provides the new dynamic program for the Braids

of partitions. Further it discusses a perspective on using intersection graphs to solve

the optimal cut problem, and identities “Partition Graphs” to be one of the good graph

structures to model partition selection. It finally concludes by formulating the optimal

cut problem on hierarchies as a flow-maximization on a tree structure, the case of braids

are also discussed.

Keywords: Hierarchical segmentation, Lagrangian Multipliers, Lattice optimization,

Mathematical Morphology.



Résumé

La segmentation hiérarchique est une méthode pour produire des partitions qui représentent

une même image de manière de moins en moins fine. En même temps, elle sert d’entrée à

la recherche d’une partition optimale, qui combine des extraits des diverses partitions en

divers endroits. Le traitement hiérarchique des images est un domaine émergent en vision

par ordinateur, et en particulier dans la communauté qui étudie les images hyperspec-

trales et les SIG, du fait de son capacité à structurer des données hyper-dimensionnelles.

Le chapitre 1 porte sur les deux concepts fondamentaux de tresse et de treillis en-

ergétique. La tresse est une notion plus riche que celle de hierarchie de partitions, en

ce qu’elle incorpore, en plus, des partitions qui ne sont pas embôıtées les unes dans les

autres, tout en s’appuyant glolalement sur une hiérarchie. Le treillis énergétique est

une structure mixte qui regroupe une tresse avec une énergie, et permet d’y défninr des

éléments maximaux et minimaux. Lorsqu’on se donne une énergie, trouver la partition

formée de classes de la tresse (ou de la hiérarchie) qui minimise cette énergie est un

problème insoluble, de par sa complexité combinatoriale. Nous donnons les deux con-

ditions de h-croissance et de croissance d’échelle, qui garantissent l’existence, l’unicité

et la monotonie des solutions, et conduisent à un algorithme qui les détermine en deux

passes de lecture des données.

Le chapitre 2 reste dans le cadre précédent, mais étudie plus spécifiquement l’optimisation

sous contrainte. Il débouche sur trois généralisations du modèle Lagrangien.

Le chapitre 3 applique l’optimisation par treillis énergétique au cas de figure où l’energie

est introduite par une “vérité terrrain”, c’est à dire par un jeu de dessins mauel, que les

partitions optimales doivent serrer au plus près.

Enfin, le chapitre 4 passe des treills énergétiques à ceux des courbes de Jordan dans

le plan euclidien, qui définissent un modèle continu de segmentations hierarchiques. Il

permet entre autres de composer les hiérarchies avec diverses fonctions numériques.

Chapitre 5 compile les algorithmes d’escalade par Guigues, sur les hiérarchies de parti-

tions, et en plus fournit le nouveau programme dynamique pour les tresses de partitions.

En outre, il décrit une perspective sur des graphes d’intersection qui aide à résoudre le

problème de la coupure optimale, et identifie les “Partition Graphs” comme l’une des

bonnes structures de graphes pour modéliser la sélection de la partition a partir d’un

famille hierarchique. Il conclut enfin par la formulation du problème de coupe opti-

mal sur les hiérarchies, comme un problème de maximisation de flux, sur une structure

d’arbre, le cas de tresses est également discuté.

Mot Clé: Segmentation hiérarchique, Multiplicateurs de Lagrange, Optimisation dans

les treillis, Morphologie mathématique.
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for their corrections and detailed comments on the thesis.
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PP Partial Partitions

HOP Hierarchy Of Partitions

BOP Braid Of Partitions

BFOS Breiman, Friedman, Olshen, Stone
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Notations

E — Image domain under study R2 or Z2

x, y — Points of E

P(E) — Set of the all subsets of E

A,S, Ti — Classes of E

π — Partition of E, sometimes written as π(E)

Π or Π(E) — Set of all partitions of E

π(S) : S ∈ P(E) — Partial partition of E of support S

{S} — Partial partition with unique class S

D(E) — Set of all partial partitions of E

t — Disjoint union: S = S1 t S2 ⇔ S1 ∪ S2 = S and S1 ∩ S2 = ∅
u — Disjoint intersection: π u S := π(S), π is a partition, S ⊆ E
H = {πi, i ∈ I} — Hierarchy, i.e. family of increasing partitions

B — Braid of partitions, monitor is characterize by partitions in B

Π(E,H) — Set of all cuts of Hierarchy H that partitions E

Π(E,B) — Set of all cuts of Braid B that partitions E

S0(x) — Classes of the leaves partition π0(E) containing point x

Si(x) — Classes of the partition πi(E) at level i, containing point x

S — Family of all classes of H or B

Cut π(S) — Partition of E into classes taken in S
ω : D → R+ — energy, i.e.non negative function on D(E)

�ω,fω,gω — energetic ordering, infimum, and supremum, w.r.t. energy ω

Π(ω,H) — ω-energetic lattices on cuts of Hierarchy H

Π(ω,B) — ω-energetic lattices on cuts of Braid B

π∗ — Minimal cut in an ω-energetic lattice

λ, µ : — Scalar parameters (e.g. Lagrangian multipliers)

λ, µ : — vector of parameters (or multipliers)

π∗(λ) — minimal cut in the energetic lattice of energy ω(λ)

π∗ϕ, π
∗
∂ — minimal cut in the energetic lattice of energy ωϕ, and ω∂).
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Chapter 0

Motivation and Thesis Overview

Hierarchical Clustering has been used extract clusters from data which are assumed to

have an underlying tree structure. This has been evident in the field of gene expression

array analsysis, phylogenetics, phylolinguistics. It has also been in the domain of im-

age segmentation, with perceptual organization trees [70] where one the segmentation

problem was motivated by a inclusion tree of regions/objects.

The basic utlities of hierarchical clustering and the following segmentation/classification

is to represent images, summarize non-hierarchical data like images into hierarchical

classes for various tasks like objection detection recognition, recover underlying struc-

tures of the data, for example in texture images.

Hierarchical clustering is an classical method to group set of datapoints in nested classes

by introducing a metric between pairs of points each time. The grouping occurs itera-

tively with the recalculation of pairwise distances.

There are two approaches to hierarchical clustering: we can go from the “bottom

up”(Agglomerative), grouping small clusters into larger ones, or from the “top down”

(Bifurcative), splitting big clusters into small ones. These are called agglomerative

and divisive clusterings, respectively. We consider Agglomerative clustering since the

bottom-up approach bounds the complexity to polynomial at worst, while divisive clus-

tering requires a combinatorial search of every possible division of cluster, leading to

exponential complexity.

Hierarchical segmentations methods have been studied to be able to parameterize the

number of segments, and later chose an optimal scale of partitions for the purpose of

segmentation. The methods in literature study split-merge heuristics, the feature dissim-

ilarities, to produce segmentations. This thesis will study how to introduce optimality

1



2 0.1. MOTIVATION

when the solution space is the hierarchy of partitions, while using its inherent lattice

structure, and avoid the combinatorial nature of the problem. 1.

0.1 Motivation

This thesis studies the optimality on constrained and unconstrained problems on hier-

archies of partitions. The thesis continues on the lines of the work by Salembier et al.,

Guiges et al., Casselles et al., [13, 47, 100], mainly. They pose the problem of constrained

minimization of an energy on the space of the hierarchy of partitions. The goal in these

studies and also one of the goals of the thesis is to define conditions on the energy that

obtains: unique solutions and in case of parmetrized energy, conditions for achieving

refinement ordered solutions with increasing parameters. In said studies, parametrized

energies are of the Lagrangian form ωϕ(π) + λ · ωδ(πS), where ωϕ(π), ωδ(π) represent a

objective and a constraint term on partitions π(E,H) in the hierarchy.

There are many methods to obtain a hierarchy of segmentations, and this thesis as-

sumes its construction to be an independent step. We will thus consider the hierarchies

themselves to be the input of our optimization problem.

0.1.1 Convex vs. Lattice based optimization

Most of conventional mathematical optimization depends on conditions ascertaining

local optimality that implies global optimality. Consequently the theory has evolved into

subject of study of convex sets. In contrast, the thesis uses lattice-theoretic approach and

follows in the lines of lattice programming methods such as [11, 112] which are concerned

with the order of optimal solutions and so are led to a development based on lattices.

The important difference between convex analysis and lattice programming methods are

seen when one removes one of the following restrictions: differentiability, convexity(or

concavity), continuity, local analysis, and adds the following qualities: using order-based

properties. This has been demonstrated in the area of pricing in economical applications

by the Topkis Theorem [112], and in the area of sub-modular optimization [12].

As an example if one considers integer constraints, e.g., one must order in multiples of

a given batch size like a case, a box, etc. This destroys convexity, but preserves sub-

lattices. Thus the presence of integral constraints enormously complicates the results

1A small square image of 5 by 5 pixels can partitioned in 1018 of different manners, which is the Bell’s
Number [15] to count the number of different partition of 25 pixels. This number grows exponentially
large with the number of elements.

2



CHAPTER 0. MOTIVATION AND THESIS OVERVIEW 3

of convex programming. By contrast, the monotonicity results of lattice programming

carry over without change to their integer counterparts [11].

0.1.2 A Morphological Approach

In earlier work which performed constrained optimization over the HOP in, Guigues et

al. [47], the optima were ordered based on the choice of the scale parameter λ. This that

was left open as choice, thus calculating all the ordered set of partitions corresponding

for each feasible value of multiplier λ. [42, 100] provided a rate-distortion interpretation

to the optimization problem following from the work on tree structured vector quantizers

[43], and calculate the λ that got closest to the constraint.

These methods do not use the inherent lattice structure. On a HOP with partition

dependent functions, like perimeter, there is no guarantees of continuity and topological

constraints of these functions. For example, one cannot describe the convex composition

of partitions, and must accept its discrete combinatorial nature. Furthermore we will

see how even when the perimeter is rational or even real valued there might be instances

when we cannot achieve the desired constraint value.

The area of Mathematical Morphology [101] is well known for its use of lattice struc-

ture in image processing. Transformations, like the dilation, erosion, in morphology are

defined on complete lattices which are partially ordered sets, containing a unique infi-

mum and unique supremum. Morphological operators on such lattices frequently lead

to scales spaces, these are classical examples of non-linear scale-spaces. In this thesis

we will introduce a numerical lattice structure on partial partitions from the HOP. The

Lagrangian approach to the problem, in the thesis is substituted by a generalized energy

based ordering of partial partitions and a subsequent lattice to define the optima. While

operating on different energetic lattices corresponding to the objective, constraint and

Lagrangian, it generalizes Guigue et al’s [47] method to obtain monotonically ordered

optimal cuts, for a constrained optimization problem on the HOP. Further the dynamic

program first used in classification and regression trees, by Breiman et al. [21] and later

generalized for the HOP in Selmbier-Garrido & Guigues [47, 100], are further generalized

in this thesis for non-linear energies.

Further the hierarchy of partitions were a result of a multi-scale segmentation step that

produced either nested or disjoint classes. This is usually a result of a greedy aggregative

step from the application of HAC algorithms. We present in the thesis a more relaxed

and richer structure, which is still hierarchical, while allowing non-nested partitions.

This is the Braids of partitions, and the advantage is that we have a larger structured

3
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space of solutions where the energetic lattice structure works and hope for a better

infimum on the energy.

0.2 Thesis Organization

The organization of the thesis is as follows. While one can find the contributions sum-

marized in the conclusion section.

Chapter 1

Definitions: To begin with, this chapter provides the basic definitions in-

cluding the partial partition, hierarchies of partitions, energies, classes, and

a basic recall of lattices.

Review on Optimization on Hierarchies: Following this a review of the

constrained optimization problem hierarchies is presented, with a recapitula-

tion of the basic problems.

Braids and Energetic Lattices: This is a crucial section and contribution

of this chapter introduces the new structure of Braids of partitions(BOP).

And also the key definitions of energetic ordering, and energetic lattices,

followed by properties of multi-scale energies, namely h-increasingness, scale-

increasingness and singularity. Examples of different compositions and their

optimal cuts are demonstrated with simple examples.

Chpater 2

Rate-distortion Interpretation: This bibliographic section 2.1 recapitu-

lates the Rate-Distortion theory and its applications in tree based source cod-

ing problems. Following which, we lead to the work of Guigues & Salembier-

Garrido, [47, 100].

Lagrangian Relaxation: Firstly we discuss Lagrangian of the constrained

optimization problem on the HOP, already established in [47, 100]. We es-

tablish how this is a Lagrangian relaxation, and give important implications

with respect to the Lagrangian dual problem. Further we demonstrate how

one can use penalty based methods to obtain a better upper bound on the

minimization.

Three models: We provide three models for the constrained problem on a

general Braid of partitions (and thus HOP as well), namely the Lagrangian

relaxation using the energetic lattice, A partition or Cut constraint based

Lagrangian relaxation, and finally a class based local constraint model.

4



CHAPTER 0. MOTIVATION AND THESIS OVERVIEW 5

Chapter 3

Experiments and Demonstrations: The first part, demonstrates the ap-

plications of the energetic lattice, in the problems of, calculating the optimal

cuts for different image segmentation models, mainly Mumford-Shah. We

introduce here the problem of extraction of partition from a hierarchy that

is proximal to a ground truth partition, and its resolution with the energetic

lattice based on local Hausdorff distances. We introduce further evaluation

measures for hierarchies of segmentations w.r.t ground truth partition.

Chapter 4 studies the saliency function and how it can be defined by consid-

ering the numerical lattice over a finite family of Jordan curves partitioning the

Euclidean plane. This is an extension from Chapter 3, where the energetic lattice

is no more defined on the partial partitions, but purely on contours of an initial

fine partition. Demonstrations include, transforming a hierarchy by performing

openings on the lattice of Jordan curves, creating a braid of partition by operating

on intersection of Jordan nets.

Chapter 5

Algorithms: This section compiles the important algorithms, including the

dynamic program on hierarchies by Guigues, the generation of braids, and

finally the extension of the dynamic program to the braids.

Partition Graphs: This section reviews maximal independent sets on inter-

section graphs for a family partitions and the formulation of image segmen-

tation problem as the calculation of a Maximally weighted independent set of

the intersection graph first proposed by Brendel-Todorovic [22]. Further we

recall the definition of a partition graph which is an intersection graph over

a family of subsets, that form a covering of the image domain E, where the

maximal independent sets of this graph, are partitions of E. This basically is

mapping between the MIS set and the partitions or cuts from the hierarchy.

This correspond to a address partitions from the covering, and helps repair

few pathological cases in case of Todorovic et al. [22]. The chapter ends with

a Max-flow formulation on trees, which reformulates the optimal cut problem.

The case of braids of partitions are studied for both the Partition Graph and

Max-flow formulation.

Chapter 6 provides a conclusion to the thesis. It discusses the main contributions

of the thesis and its future perspectives.
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Chapter 1

Braids and Energetic Lattices

Publications Associated with Chapter

• [59] Global-local optimizations by hierarchical cuts and climbing energies, Pat-

tern Recognition(PR) 2014.

• [103] Optima on Hierarchies of Partitions ISMM 2013

• [62] Climbing: A unified approach for global constraints on hierarchical seg-

mentation, ECCV 2012 Workshop.

• [104] Hierarchies and climbing energies, CIARP 2012

After a brief reminder on lattices, partitions and hierarchies, this chapter develops the-

oretical tools necessary for the rest of the thesis, namely the braid of partitions and

energetic lattice. Though several notions are defined to analyze constrained optimiza-

tion, we will actually deal with the problem only in the second chapter.

1.1 Basic notions and Notations

This section presents the basic constructs of the hierarchies of partitions (HOP). The

space E under study is arbitrary, continuous or discrete, finite or not, topological or

not. P(E) represents the power set of set E. The elements x, y of E are called points,

or leaves.

7



8 1.1. BASIC NOTIONS AND NOTATIONS

1.1.1 Partitions and Partial Partitions

Definition 1.1. A partition π of the image domain E is a family of sets S:

π = {S ⊆ E} (1.1)

where S : E → P(E), and for each point x ∈ E, we have x ∈ S(x), and

x, y ∈ E ⇒ S(x) = S(y) or S(x) ∩ S(y) = ∅ (1.2)

These S are called the classes of the partition π.

Intuitively, a partition is a division of image domain E into classes which are pair-wise

disjoint and whose union restores E in its entirety. We also refer to the partition as

π(E) in some cases.

First introduced by Ronse in [97], a partial partition is a local partitioning of a subset

S ⊆ E of the input space.

Definition 1.2. A partial partition π(S) of support S ∈ P(E) is a set,

π(S) = {Ai|Ai ⊆ S,Ai ∩Aj = ∅} (1.3)

where S = ∪Ai, is called the support of partial partition π(S).

An example is demonstrated in figure 1.1. The partial partition of S into the single class

S is denoted by {S}.

The set of all partitions π of E forms a complete lattice Π(E) for the partial ordering of

the refinement, where πi ≤ πj when each class Si(x) of πi is included in the class Sj(x)

of πj at the same point x ∈ E:

πi ≤ πj ⇔ Si(x) ⊆ Sj(x). (1.4)

This refinement lattice is denoted by Π(E). The refinement infimum of a family {πi, i ∈
I ⊆ R} in Π(E) is the partition π whose class at point x is ∩Si(x), and the refinement

supremum is the finest partition π′ such that Si(x) ⊆ S′(x) for all i ∈ I and x ∈ E.

This is demonstrated in figure 1.1.

8



CHAPTER 1. BRAIDS AND ENERGETIC LATTICES 9

Figure 1.1: Left: Partial partition with support S highlighted in red, with local
partitioning shown in dotted lines. Right: Partial partition refinement ordering.

1.1.2 Hierarchy

Hierarchies of partitions are the matter of an abundant literature (see for example [10],

[90], [78]). The definition that we propose here is based on two axioms:

Definition 1.3. (Hierarchy of Partitions(HOP)) A family {πi, i ∈ I ⊆ Z} of partitions

of E defines a hierarchy when,

(i) The partitions πi are nested, i.e. they form a chain for the refinement ordering:

H = {πi, i ∈ I} with i ≤ k ⇒ πi ≤ πk, I ⊆ Z, (1.5)

where the finest partition π0 is called the leaves, and the coarsest one, is the root;

(ii) The number of leaves is finite in any class of the hierarchy, except possibly, in the

class {E}.

One often takes the whole space {E} for the root. A toy example is given by the following

hierarchy of nested partitions of Z where the central class enlarges:

i = 0 π0 = all points of Z

i = 1 π1 = {−∞}...{−3}; {−2}; [−1,+1]; {+2}; {+3}...{+∞}.

i = 2 π2 = {−∞}...{−4}; {−3}; [−2,+2]; {+3}; {+4}...{+∞}.

i = 3 π3 = {−∞}...{−5}; {−4}; [−3,+3]; {+4}; {+5}...{+∞}

...............................................

Though |I| = ∞, the number of leaves at any class Si(x), x ∈ Z remains finite as soon

as the label i <∞. Similar situations also occur in the Euclidean spaces. One can think

of hierarchies where the leaves are Voronoi polygons, or polyhedra, or more generally of

stationary random partitions.

9



10 1.1. BASIC NOTIONS AND NOTATIONS

In earth sciences, most of the phenomena are not studied in a finite domain. For example

Air-borne and satellites images are of this type. Optimal segmentation of such phenom-

ena must be reached by local, or regional information, and not via a global energy, which

would involve the whole space, which needs intricate treatment. Here Axiom (ii), opens

the door to a regional approach, a door which leads to the energetic lattices.

1.1.3 Classes

A hierarchy can be described from its classes, or nodes. At each point x ∈ E the family

of all classes Si(x) containing x forms a closed chain of nested elements in P(E), from the

leave S0(x) to E. This chain is called the cone at point x. Let S ={Si(x), x ∈ E, i ∈ I}
be the family of all classes of H. One directly extends to S the characterization (1.2) of

a partition by its classes containing any points x, y ∈ E,

i ≤ j ⇒ Si(x) ⊆ Sj(y), or Si(x) ⊇ Sj(y), or Si(x) ∩ Sj(y) = ∅. (1.6)

The classes of the partition πi−1 included in the class Si of the partition πi are the sons

of Si. The symbol t refers to the disjoint union of classes, i.e.

S = S1 t S2 ⇔ S1 ∪ S2 = S and S1 ∩ S2 = ∅.

A cut of H is a partition of the space E into classes taken in S. The symbol Π(E,H)

stands for the set of all cuts of H. Clearly, Π(E,H) is a sub-lattice of Π(E), the lattice of

all partitions of E. If S ∈ S(H), then Π(S,H) denotes the family of all partial partitions

of S whose classes are in S(H).

1.1.4 Energy

An energy ω is a real valued function over the family of partial partitions D(E) of space

E:

ω : D(E)→ R (1.7)

When the energy ω of a p.p. a is the sum of the energies of its classes, then ω is linear,

or separable in terms of Guigues [49, 90, 100], and can be written now using the general

definition from equation 1.7 as:

ω(π(S)) =
∑

Ai∈π(S)

ω(Ai) (1.8)

10
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Furthermore in equation 1.8 when ω(π(S)) ≥ ω(S), i.e. the sum of energies of classes in

the p.p of support S is greater than or equal to the energy on the single class {S}, then

ω is sub-additive. Both assumptions of linearity and sub-additivity will be generalized

in our theory, already visible in the definition of the energy in equation (1.7). One can

find work on the valuation of partial partitions by Ronse in [98, 99].

1.1.5 Recall on Orderings and lattices

A set is (partially) ordered when a binary relation ≤ is defined on its elements, with

a ≤ a (reflexivity), a ≤ b and b ≤ a⇒ a = b (anti-symmetry), and a ≤ b , b ≤ c⇒ a ≤ c
(transitivity). The ordering is total when all pairs of elements of E are ordered. The

sets of Z2 are ordered for the inclusion, the real numbers are totally ordered for the

numerical inequality.

A lattice is an ordered set L in which any two elements have a greatest lower bound

(g.l.b.) and a least upper bound (l.u.b.). They are denoted by ∧ and ∨ respectively.

When this property extends to any family of elements, possibly infinite, the lattice is said

to be complete. A finite lattice is thus always complete. A lattice contains always two

extreme, or universal, elements, namely the least and greatest of all. A basic example

of a lattice is provided by the elements P(E) of an arbitrary E. They are ordered by

inclusion, the two bounds are the intersection ∩ and the union ∪, and the universal

elements are (∅, E}. An ordering relation does not systematically produce a lattice,

for example when a connection is defined on E, the connected sets of E do not form a

lattice, unlike P(E), though they are ordered by inclusion.

A sub-lattice of L is a family L′ ⊆ L closed under ∧ and ∨ (a notion sometimes called

pseudo sub-lattice in literature). For example, the family of all sets contained in a zone

Z ⊆ R2 is a sub lattice of P(R2). Finally, a totally ordered sub-lattice is called a chain.

The lattice is flexible, because a same family of mathematical objects may be the matter

of several different lattices. For example, the braid cuts will be provided with two lattices

in this chapter, and with four lattices for constrained optimization, considered in chapter

2. Furthermore the lattice structure assures us that any family has a minimal and a

maximal elements, both unique, and which belong to the lattice. A set Π of partitions of

E (e.g. the braid cuts) cannot be significantly modeled by a topological vector space, so

that one cannot speak of the continuity, or the zero gradient, or the convexity, of a real

valued function over Π. Minimization questions must be addressed in another manner,

what precisely does the lattice approach.

11
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1.2 Optimization on Hierarchies of Partitions

In this section we review the problem of optimization on HOP in literature.

1.2.1 Classification and Regression Trees

Classification and Regression Trees (CART) were introduced in the 80’s by Breiman et

al [21], which creates powerful and simple binary tree based models for classification and

regression problems, in statistical learning theory [113]. In both cases, the method con-

sisted in creating rectangular partition of a feature space (high dimensional Rn), either

fit a model over each of these rectangles in case of regression, produce a classification.

These trees (now called decision trees) described then the estimator for the regression

function, or a linear separator for classification tasks. The trees we consider here only

address recursive binary partitions as show in in the figure 1.2.

To avoid over-fitting the data, such trees are dealt with commonly in two broad ways:

Firstly, prune them (which is what we will consider for the rest of our study). Secondly

one can use aggregations of different subset of points to average over many such trees,

which also includes the classical Random Forests which consists in using a random

subspace of features to partition a node and aggregate them.

1.2.1.1 Pruning CART trees

First the tree is grown until a minimal number of samples per class is reached. The

growth is done by splitting pre-existing classes such that at each step the split point

picked minimizes the quadratic deviation from the mean value, in each of the split

produced. This is the case for regression, while for classification we have the node

impurity and entropy based measures [37].

1.2.1.2 Optimal tree pruning

Deciding the tree size is important parameter since this describes the model’s complexity

as well the solution space being spanned. Breiman et al. proposes to grow a initial large

tree T0, until a minimal number of samples per rectangular class is reached (a minimum

number of points of population), following which a pruning is performed to reduce the

complexity of the tree for the purpose of classification or fitting a regression model for

function.

12



CHAPTER 1. BRAIDS AND ENERGETIC LATTICES 13

R1
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Figure 1.2: A two dimensional feature space is recursively partitioned using a binary
tree where the partitions consist of purely rectangles. The corresponding binary tree
is shown. One continues growing the tree until each rectangular encloses a minimal

number sample points.

Tree Terminology: Considering Breiman et al.’s [21] notation for the trees just for this

section, we denote by T0 the complete non-trivial binary tree that is grown by recursive

binary partitioning of the feature space. T1 is said to be a subtree of T0 of the triple

T1, left1(·), right1(·) forms a tree. If T1 is a subtree of T and T2 a subtree of T1 then

T2 is subtree of T0. Given any node t ∈ T0 , the subset Tt consisting of t and all its

descendants is called the branch of t stemming from t. This is a subtree of t. Let T̃

denote the terminal nodes of the tree. A tree T is trivial if the cardinality of set is

empty, i.e. |T | = 1, or also when the set T − T̃ is empty. A subtree T1 of T0 is called a

pruned subtree of T0 if root(T1) = root(T0); this is denoted by T1 � T0. � is transitive,

and so is ≺. This provides a top-down definition of a pruned subtree, while Breiman

also provides a bottom up definition.

Any arbitrary subset T1 of T0 is a subtree of T0 having a root t, if an only if it is a pruned

subtree of T0 rooted at t, iff, it is a pruned subtree of Tt. Given now a real number λ

(α in Breimans notation), lets define, Rλ(t) = R(t) + λ for t ∈ T0. Given a subtree T of

T0, let, R(T ) =
∑

T̃ R(t) and

Rλ(T ) =
∑
T̃

Rλ(t) + λ
∣∣∣T̃ ∣∣∣ .

Cost complexity Pruning: If T � T0 be a subtree obtained by pruning T0 (Pruning

a branch Tt from a tree T consists of deleting from T all descendants of t), and Rm

represents the m different regions representing the terminal nodes of tree T .

The optimal pruned subtree is one which minimizes:

13



14 1.2. OPTIMIZATION ON HIERARCHIES OF PARTITIONS

Rλ(T ) =

|T |∑
m=1

∑
xi∈Rm

(yi − µRm)2 + λ
∣∣∣T̃ ∣∣∣ . (1.9)

over each node which results in an optimal pruned subtree Tλ � T0 for a given λ.

Following [113], here µRm is the mean value of observed variable y in the region Rm. λ

is a parameter that governs the trade-off between tree size and fidelity to data.

The expected training error is non-monotonic with the subtrees of decreasing size. This

shows that as the trees initially decrease in size, the error rate decreases. The error

reaches a minimum at a particular subtree size and begins to climb again as the trees

get too small. This behavior can be attributed to a trade-off between bias and variance.

The optimal λ̂ is adaptively determined by cross-validation. For each λ the weakest link

pruning, i.e. successively collapse each internal node, that produces the smallest per

node increase in the in an optimal pruned subtree’s quadratic term in 1.9, is performed

and continued till the root. λ̂ minimizes the cross-validated sum of squares.

1.2.1.3 Uniqueness and Monotonicity

In defining a Cost-Complexity measure that is a linear combination of misclassification

error and tree size, Breiman et al. [21] analyses the following questions:

• Uniqueness Is there a unique subtree T ≺ T0 which minimizes Rλ(T )?

• Monotonicity In the minimizing sequence T1, T2, ... is each subtree gotten by

upward pruning from the previous subtree, i.e. does the following nesting relation

hold: T1 � T2, ...,� T0.

Optimally pruned subtree: A pruned subtree T1 of T0, is said to be one of the

optimally pruned subtree of T0, with respect to λ if:

Rλ(T1) = min
T ′≺T0

Rλ(T ′) (1.10)

Since there are only finitely many pruned subtrees of T , there is clearly an optimal one,

but not necessarily a unique one. An optimally pruned subtree T ∗ is said to be the

smallest optimally pruned subtree of T0 if T ∗ � T ′ for every optimally pruned subtree

T ′ of T . There is clearly at most one smallest optimally pruned subtree of T (with

respect to λ); when it exists, it is denoted by T (λ).

14
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To avoid the combinatorial problem of choosing an optimal subtree from the expo-

nentially growing number of choices, Breiman et al. suggest the following optimality

conditions. We now follow Breiman et al.’s book [21], in chapter 10, Theorem 10.9, and

state the following:

Proposition 1.4. (Breiman’s Conditions) The smallest minimizing subtree T (λ) for

complexity parameter λ is defined by conditions:

• Rλ(T (λ)) = minT≺T0 Rλ(T ),

• If Rλ(T ) = Rλ(T (λ)), then T (λ) ≤ T

Breiman et al. states the condition of uniqueness though implicitly. It resolves the

choice of minimal cost-complexity across many optimal subtrees, possibly unordered, by

picking smallest(sized) subtree, minimizer of Cλ. This ensured uniqueness for Breiman

et al. as well as monotonicity.

In proposition 3.8 Chapter 3 of [21] Breiman shows that for any non-terminal node t of

T , we have

R(t) > R(Tt) (1.11)

where R can be for example the error term in 1.9.

This gives us the core idea of the cost-complexity pruning, in that it starts with a pruned

subtree, eliminates the weakest sub-branch, to produce the next optimal pruned subtree.

This is called weakest link cutting.

For a singleton node {t}, where t ∈ T0 let consider,

Rλ({t}) = R(t) + λ(1).

For any branch Tt rooted in t, lets define

Rλ(Tt) = R(Tt) + λ
∣∣∣T̃t∣∣∣ .

The value of λ at which Tt (child) becomes equally optimal in complexity w.r.t the

subtree root node (parent) t, we solve the inequality Rλ(Tt) < Rλ({t}), giving us

λ <
R(t)−R(Tt)

|Tt| − 1
(1.12)

15



16 1.2. OPTIMIZATION ON HIERARCHIES OF PARTITIONS

Breiman et al. provides conditions of monotonicity, where for increasing λ, optimal

pruned subtrees monotonically reduce.

Breiman also defines a mapping that spans all nodes and associating the critical param-

eter value in equation 1.12.

Λ1(t) =


R(t)−R(Tt)

|T̃t|−1
, t /∈ T̃1

+∞, t ∈ T̃1

(1.13)

The weakest link t1 in T1 is a node such that

Λ1(t1) = min Λ(t), t ∈ T1

and for the next new complexity parameter value put

λ2 = Λ1(t1)

After this step we define a new tree

T2 = T1 − (Tt1)

We continue performing a the weakest link cutting on this new tree, by recalculating a

new function Λ2. This done until we reach the root. This yields a monotonically ordered

set of optimally pruned subtrees, T1 > T2 > T3 > ... > t1.

1.2.1.4 Departing from Binary Trees

One can observe that the conditions for optimal pruning are not restricted to binary

trees. Guigues [47] provides a generalization for the weakest link pruning on a general

hierarchy of partitions. Though it is also notable that any general tree can be rewritten

as an equivalent binary tree, and such reorganization of tree topology don’t actually

change the optimal cut, i.e. the leaves set of the optimally pruned subtree.

We shall demonstrate this with a quick numerical example in figure 1.3. As seen in this

figure, one can consider any general tree with a monotonically increasing function R in

equation 1.11 on the nodes of the tree in the place of the variance term, while just adding

a complexity cost of 1. This penalizes subtrees which have too many leaves. We can see

16
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Figure 1.3: Pruning example demonstrating Cost-Complexity pruning. Figure
demonstrates a tree with classification the cost function given for each node given
by equation (1.9) where values for different values of λ = 0(left), 0.5(center), 1(right),
are shown with their corresponding pruned optimal subtrees. The pruned nodes are
presented in gray. One can also see the representation of the the cuts in blue. They

represent the leaves
∣∣∣T̃ ∣∣∣ of the optimally pruned subtree. These cuts represent not only

the pruned subtree, but also the partition of the space. It is sufficient to refer to the
cut and not the whole subtree.

that the cut progressively moves up the tree to fewer number of classes as the value of

λ increases. This is a very simple version of the constrained optimization problem on

the tree. From now on we will simply refer to the optimal subtree as the optimal cut,

both of which refer to the same result as demonstrated.

1.2.2 Salembier-Garido’s Optimal Pruning & Guigue’s Scale-set

Salembier-Garrido and Guigues [47, 100] generalized the CART framework for the con-

strained optimization problem. Salembier-Garrido study binary partition trees, which

represent a hierarchy of partitions created by using the max-tree representation, while

Guigues considers a hierarchy created from complete linkage on regions of an over-

segmentation [48], titled as Cocoons. In both studies the cost-complexity pruning, a

greedy strategy is used to find a constrained minimum, while replacing the constraint

of the size of the subtree
∣∣∣T̂ ∣∣∣ by a more general function which is the perimeter of the

partition. See Equation (1.14).

One must note now that the difference in these methods w.r.t CART is the interpreta-

tion of the constrained minimum. Salembier-Garido and Guigues provide a Lagrangian

multiplier interpretation of the optimization [39]. This is discussed later in section 2.1.

Constraints are now based on the number of regions and length of perimeter, thus pro-

viding a larger range of constraint values, while not requiring a large initial tree to start

pruning like in the case of CART. Salembier-Garrido [100] provided a Rate-Distortion

interpretation of the constraint problem of choosing a segmentation from a hierarchy

with the constrained perimeter.

17



18 1.2. OPTIMIZATION ON HIERARCHIES OF PARTITIONS

In Guigues thesis [47] he maps the family of cuts in an input hierarchy H1 to an ordered

set of cuts forming a new hierarchy. He views this step as a precursor to image segmen-

tation, where the all choices of scale parameter values λ are indexes of the new hierarchy

of segmentations Hλ. The optimal λ for image segmentation is not really considered. He

refers to the monotonicity in λ, as causality using terminology of scale-spaces, since the

scale-sets are image descriptors defined by a hierarchy, energy and a numerical function

generating the energy.

Furthermore Guigues provides conditions of monotonicity akin to Breiman et al, by

describing multi-scale energies on the nodes in the hierarchy of partitions. The constraint

function (the number of leaves in a sub-branch in case of CART) is defined to be sub-

additive2, i.e. f(A ∪ B) ≤ f(A) + f(B). While the objective function(variance in the

case of CART) was defined to be super-additive, i.e. f(A ∪ B) ≥ f(A) + f(B). One

must note that both conditions of super-additivity and sub-additivity are sufficient for

monotonicity, but not uniqueness. As we have already seen there can be many optimal

cuts, but there can be only one smallest/largest (in terms of refinement) optimal cut.

This is how uniqueness is assured. Please refer to the summary in table 2.1 for the

different conditions on uniqueness, monotonicity and constraint sense.

We interject here to note that the pruning of trees has been a rich area of study, with

recent theses on using them in a variety of problems. In the domain of morphological

filtering Yongchao Xu’s thesis [123], studies pruning strategies on attribute(of gray scale

components) trees, instead of directly on the max-tree. One can also cite the optimal

pruning on Binary Partition Tree(BPT), for region based classification map generation

on hyper-spectral images, by Valero et al. [119] as well as in Valero’s thesis [118].

1.2.3 Problem review on hierarchies

Now we are in a position to formally state the problem of constrained optimization on

the HOP as formulated by Guigues [47]. This generalizes of the complexity of the model

in CART as formalized in equation (1.9).

minimize
π∈Π(E,H)

∑
S∈π

ωϕ(S)

subject to
∑
S∈π

ω∂(S) ≤ C
(1.14)

1and thus the family of subtrees T ⊆ T0 in terms of CART
2which in case of Breiman is implicitly set by the size of a subtree constraint

∣∣∣T̃ ∣∣∣.
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where the objective and constraint functions ωϕ(S), ω∂(S) is defined over every partial

partition following the separability condition3. The problem above is solved using a

dynamic program which follows from the CART weakest link pruning algorithm. The

value C is a constant on bounding the constraint function. Here ωϕ(S) is identified by

Guigues as the fidelity or data term, while, ω∂(S) is identified as the model complexity

term. Further he states, that for two models with equal data terms, the simpler of the

two should be preferred. This is to choose the parent w.r.t the children, when both have

the same energies.

Guigues states the following to be a dual problem, which is, between two equally complex

models, the closer to the data of the two should be preferred, giving the following

constrained optimization problem:

minimize
π∈Π(E,H)

∑
S∈π

ω∂(S)

subject to
∑
S∈π

ωϕ(S) ≤ K
(1.15)

This second constraint problem in equation (1.15) has an interpretation in the rate-

distortion interpretation introduce by Salembier-Garrido [100]. This will be again dis-

cussed in section 2.1.

The constrained optimization problem in equation (1.14) with no conditions on the

energies are NP-hard, with an exponentially growing solution space of the lattice of

partitions belonging to a HOP.

Guigues does not directly solve the constrained optimization problem in equations (1.14)

and (1.15). Instead he provides conditions on ωϕ, ω∂ to achieve monotonicity. This is

termed as the scale-set which is a family of partitions πλ, which are monotonic mapping

of cuts or partitions Π(E,H) of hierarchy H, to the levels of an optimal hierarchy. These

monotone cuts of the hierarchy H are a result from a total ordering. We will discuss

later why we will not need this additive monotonicity condition and will be replaced by

the less strict condition of scale-increasingness 1.22.

Unconstrained optimization: The problem in equation (1.14) were solved by Salembier-

Garrido and Guigues, by performing unconstrained minimization on the Lagrangian

function, to solve the constrained optimization problem in equation (1.14). We will

now distinguish two types of optimization problems, firstly performing unconstrained

optimization for any general energy ω, discussed subsequently in this chapter, while

constrained optimization using the Lagrangian will be detailed in chapter 2.

3Though one must note that in further development we will not require additivity condition and we
can compose these energies by non-linear operators like the supremum or infimum.
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20 1.2. OPTIMIZATION ON HIERARCHIES OF PARTITIONS

1.2.4 Dynamic program for minimal cut

The algorithm achieving the optimally pruned subtree in [21], also known as the BFOS

(after the authors, Breiman, Friedman, Olshen, Stone) algorithm in literature, consists

of a dynamic program, that performs a bottom-up scan, while pruning off a branch or

the node its rooted in.

Dynamic program consists in solving a structured complex problem by decomposing

it into smaller simpler subproblems. These subproblems require to be overlapping in

nature, such that a solution to a subproblem is calculated only once and serves to solve

a larger subproblem. Furthermore this partial solution when aggregated with others,

produces a global solution. The aggregation is quite often has a successive approxi-

mation interpretation. Following Guigues, in view of the Bellmenian characteristic of

any dynamic program, in order to find the optimal cut, while one performs a bottom up

search starting at the leaves level, the algorithm will implicitly have to solve subproblems

appearing at higher scales before some lower scales. This means, some nodes appearing

early lower down in the hierarchy might be part of a global solution.

In the current case the subproblem consists in comparing the energies of parents w.r.t

to their children. The subproblem can be brought down to over a partial support of the

image domain, where one needs to check whether to keep the children or prune it and

keep the parent node.

In our terms, it is whether a parent or a child partial partition is retained. This has

been used in a more general setting of general partitions from a hierarchy by Salembier-

Garrido and Guigues to calculate provisional optimal cut over a given support of the

image domain.The optimal structure of the dynamic program is:

ω∗(π(S)) = min

{
ω({S}),

∑
a∈π(S)

ω(a)

}
(1.16)

π∗(S) =

{S}, if ω(S) ≤
∑

a∈π(S) ω(a)

π(S), otherwise
(1.17)

Here we see in equation (1.17) that one either chooses the parent class {S} or its child

partial partition π(S). The advantage of the partial partition structure can be especially

seen here. It helps encode any partitioning of a local support S, and represent the provi-

sional partition in the dynamic program. Further in subsection 1.6.4 on h-increasingness

we will see the generalization of this dynamic program with non-linear compositions of

energies of classes of child partial partitions, as well as any change in the multi-scale

20



CHAPTER 1. BRAIDS AND ENERGETIC LATTICES 21

energy which can start out linear at lower scale and turn non-linear at higher scales, as

long as it abides by the h-increasingness.

1.2.5 Going from Scale-sets To Energetic Lattices

With the following, we connect the work on HOP in literature with our approach:

1. The sequence of studies by Breiman et al., Salembier-Garrido, and Guigues work

on the space of HOP. Here it is critical to note that we will work on the expanded

space of Braids, introduced further on.

2. All energies in above mentioned studies are always linear. Though there exists

non-linear energies on HOP, such as area filtering, Soille’s constrained connectivity

[108], Ackay-Ackcoy filtering on multi-spectral images [2]. We propose necessary

and sufficient conditions where the dynamic program of weakest link pruning still

holds, namely h-increasingness.

3. Monotonicity of cuts have up until now been assured by sub/super additivity of

the constraint function, in conjunction with said linear energies. For the classes

of both linear and non-linear energies, we introduce a necessary and sufficient,

monotonicity condition, namely scale-increasingness.

4. Uniqueness in the above studies have not been explicated, while leaning on Breiman’s

condition of the smallest optimal subtree. We achieve uniqueness, by introducing

a lattice structure, i.e. energetic lattice.

In the following sections we will introduce the Braids, energetic ordering and energetic

lattices, h-increasingness, scale-increasingness, and finally inf-modularity, respectively.

1.3 Braids of Partitions

The Braid of partitions, provides a hierarchical structure richer than the hierarchy while

lending itself to the constrained optimization problem.

In the lattice of all partitions of a set, the hierarchies form chains, i.e. totally ordered

sub-lattices. Can it be possible to construct other sub-lattices, which no longer form

chains, while they share hierarchical properties, and help improve the search space for

the constrained optimization and the inherent dynamic programming structure? The

need for such models arises in several situations, in frequency domain analysis, multi-

variate segmentations, where partition contours are not totally ordered. One can also
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22 1.3. BRAIDS OF PARTITIONS
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Figure 1.4: Toy example of a braid. E is partitioned by leaf nodes {a, b, c, d, e, f}.
The set B1 = {π1, π2, π3} forms a braid whose pairwise supremum is indicated at the
right. One can note now that π1(X), π2(X) have a common parent X, but π2(Q), π3(Q)
a common grand parent Q. The partition πx cannot be added to B1. There does not
exist a supremum class, in the monitor hierarchy H, other than from the whole space

E, thus not producing a braid structure.

consider situations where hierarchies have to be combined, or enlarged to more adapted

structures. One can view such structures as chains of segmentations of an input image

where some levels are uncertain, and yield several partially ordered variants. In such

cases, it should be preferable to maintain all of variants and to choose among them later,

in a dynamic program step.

In figure 1.4 we demonstrate a simple example of a braid with its dendrogram structure.

A formal definition is provided in equation 1.18. As we can see the partitions π1, π2 are

not nested nor disjoint, and basically correspond to different segmentation hypotheses

that exist in the stack of segmentations.

1.3.1 Definition

To define the braids, we start from the lattice Π(E) of the partitions of E, of minimal

element the leaves partition π0. Next we introduce a hierarchy H which serves as a

parameter. A braid B is a family of partitions of E. The family B is not arbitrary, but

monitored by a non-trivial hierarchy H, in the sense that the refinement supremum of

any two elements of Π(E,B) is a cut of H. This leads to the more formal definition:

Definition 1.5. (Braid of Partitions) Let Π(E) be the complete lattice of all partitions

of set E; let H be a hierarchy in Π(E). A braid B of monitor H is a family in Π(E)

where the refinement supremum of any pair π1, π2 in B is a cut of H, other than {E},
and belongs to Π(E,H) \ {E}:

∀π1, π2 ∈ B ⇒ π1 ∨ π2 ∈ Π(E,H) \ {E} (1.18)
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In other words, the classes of supremums π1∨π2 are classes of monitor hierarchy H, and

the monitor by itself is not uniquely defined. Though a unique monitor can be imposed

by extracting the largest hierarchy (in terms of refinement) whose classes contain the

classes of the partitions in the braid. One thus still has a scale selection to perform in

the context of chosing a monitor hierarchy for a given application. Just as the cuts of

H, which were denoted by Π(E,H), we now define the cuts of B as the partitions whose

classes are taken in B, and denote the class of all these cuts by Π(E,B).The hierarchy H

may itself belong to the braid, or not. On the other hand, any hierarchy is a braid with

itself as monitor. When H ⊆ B, we have Π(E,H) ⊆ Π(E,B) ⊆ Π(E), i.e. the braid

cuts Π(E,B) are in between the cuts of the hierarchy H and the set of all partitions of

E. A braid cannot be represented by a saliency, except when it reduces to a hierarchy

whose classes are connected sets.

Remark: The partition with one class {E} is not considered in definition 1.18, since

this would imply that any family of arbitrary partitions would form a braid with {E}
as supremum, thus losing any useful structure. We also assume a locally finite number

of classes in such cases, like in the case of hierarchies.

The braids of partitions (BOP) provide an alternative hierarchical structure. In case of

a hierarchy the cone or family of classes containing a point x ∈ E, can only be nested

or disjoint. While the cone of classes in the BOP, that contain a single point, are not

necessarily nested, though their suprema are.

The braid structure’s definition is a general and provides multiple ways of creating the

braid. We state one direction here, which is a composition law on tuples of hierarchies

which produces a braid.

Proposition 1.6. Given three hierarchies H,H1, H2 formed from the same leaves, such

that, H1 ≤ H, H2 ≤ H, then the family of partitions given by {H1 ∪H2} \ {E} forms a

braid with the monitor H.

Here H1 ≤ H on hierarchies says that each class of hierarchy H1 is contained in the

classes of H. The union of hierarchies form braids, while braids are not necessarily

decomposable into hierarchies.

Lack of discriminatory ultrametric: A classical result about hierarchy tells that the

set S of the classes of H is a metric space, where the distance is the absolute difference

between the levels of the classes. It is defined as an ultrametric, where the triangle

inequality by addition, is replaced by the maximum, which is stricter [68]. This ensures

a characterization of each hierarchy, by its ultrametric function. In the case of a braid

B, because two different classes S and S′ of π and π′ respectively may be inserted at
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24 1.3. BRAIDS OF PARTITIONS

the same level of the monitor hierarchy H (hence have a zero distance), the ultrametric

distances between such classes lose characterization, and the ultrametric may not be very

discriminative. However, the classes of B can always be described by other distances

(e.g. measure of the intersection, Hausdorff metric in case of tessellation of Rn, etc.).

Particular versions of braids have appeared in classification problems, for example Diday

[36], demonstrates pseudo-hierarchies, called pyramids, where a child may have two

parents.

1-D Example: Given a hierarchy H = {π′i}, and when the level index i is odd, let us

associate with π′i a second partition (residue) π′′i ≤ π′i+1. This generates the following

sequence:

π′0, {π′1, π′′1}, π′2, ..., π′2i, {π′2i+1, π
′′
2i+1}, π′2i+2, ..., {E}, (1.19)

which resemble a braid of hair, by successive enlargements and shrinkages. One demon-

strates a more flexible braid using equation (1.19). To do this, let the number of sup-

plementary partitions at the odd levels be random. One can also let the hierarchy H

monitor the residue, once in every three levels, at level i say, and introduce supplemen-

tary partitions at levels i+ 1 and i+ 2 with the condition that all these supplementary

partitions are smaller than π′i+3. Note that the partitions π′′k ∈ R may not correspond

to some level of H. It is the case for example when π′′1 , π
′′
2 , π

′′
3 ∈ R, with π′′1 ∪ π′′2 = π′i

and π′′2 ∪ π′′3 = π′i+10, where π′i, π
′
i+10 ∈ H.

An example of the use of braid is depicted in Figure 1.5 Voronoi partitioning are utilized

to remove parasitic grains of small sizes. One later decides during the optimization

phase from the constructed braid, which of these partitions have minimal energy. This

example also shows that the braid based minimization works also when the input is a

single partition, the monitor hierarchy is part of the construction step of the braid.

In figure 1.6 we demonstrate a braid created by composing two hierarchies, which are

both created from flooding area and volume attributes of a gray scale image. The

partitions of the braid consists of partitions from the two hierarchies. Choosing the

attribute and gradient function enables one to create a family of non-trivial braids using

the watershed transformation. We demonstrate more examples on color and depth as

well as an algorithm to generate braids in chapter 5.
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Figure 1.5: The intial color image (1) was segmented, giving the partition (2). Two
zones are perhaps not correctly segmented demonstrated in (3), that we filled up by
a Voronoi partitioning producing partition (4). Further a second parasitic class in
(5) is removed and replaced with a Voronoi partitioning giving (6). (7) indicates the
intersections of the contours of the initial segmentation (2) and the Voronoi partition
in (4), and (8) is the net opening (refer to operator in chapter 4) of (7) and similarly
for (9) and (10) with the second parasitic class in (5). (11) depicts the supremum of
the two partitions (8) and (10). The three partitions (1, 8, 11), with the whole space
form the monitor hierarchy H of the braid made by (1, 4, 5, 8, 10, 11), where the
(8) = sup(1, 4) and (11) is the smallest element of H larger than the sup(1,6) and also

(11) = sup(8,10).
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Figure 1.6: From left to right: Initial gray-scale image, watershed hierarchy saliency
by area attribute flooding, Watershed hierarchy saliency by volume attribute flooding,
the monitor hierarchy saliency obtained by net opening over the intersection of Jordan

nets, see subsection 4.8.2.

1.3.2 Classes of Braids

We now study the classes of any cut π from a braid. The family cuts are denoted by

Π(E,B). Here are few properties of these classes.

• ∀π1, π2 ∈ B, π1 ∨ π2 contains a finite number of classes of π1 and π2. This is a

direct consequence of the second axiom of a hierarchy, in definition 1.3.

• The definition of a braid is transitive. Indeed, Π(E,B) is a sub-lattice for the

refinement, so that if π1 ∨ π2 and π2 ∨ π3 belong to Π(E,B), then π1 ∨ π2 ∨ π3 ∈
Π(E,B). Moreover, the supremum in relation (1.18) extends to infinite families.

Let {Sj(x)} be set of all classes at point x of a possibly infinite family {πj , , j ∈ J}
of cuts of the braid B. The finite unions of these classes forms a cone of classes

in the monitor hierarchy H, since they all contain the point x. By definition of a

hierarchy their union S(x) = ∪Sj(x) also belongs to H. As point x spans E, the

S(x) generate the classes of a cut π of H, which turns out to be the lowest upper

bound (l.u.b.), in H, of the family {πj , j ∈ J}.

• The next two properties are the concern of minimal covering of braid cuts by

hierarchy cuts.

Proposition 1.7. Every braid cut π ∈ Π(E,B) admits a lowest upper bound πmin among

the cuts Π(E,H) of the monitor hierarchy H. The classes Smin(x) of πmin are supports

of p.p. of π.

Proof. Let V (x) be the class at point x of the braid cut π ∈ Π(E,B). Given another

braid cut πj consider the class Sj(x) of the hierarchy cut π ∨πj . Make πj span all braid
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Figure 1.7: Left: and middle: details of the partitions π1 and π2 of the braid B,
with the two classes S1(x) and S2(x) at point x. Right: Smin 1(x) and Smin 2(x) are the
two lowest upper bounds of S1(x) and S2(x) in the monitor hierarchy. Smin 2(x) is the

support of a partial partition of π1 because Smin 1(x) ⊆ Smin 2(x).

cuts Π(E,B)\π. The intersection

Smin(x) = ∩j{Sj(x)} ⊇ V (x) (1.20)

is a class of H because the Sj(x) are nested, thus are classes of partitions of the chain

H as well as their intersection. Therefore, when the point x describes E then the l.u.b.

πmin of π in H is generated. The inequality π ≤ πmin shows that the class Smin(x) of

πmin at point x is the support of a p.p. of π.

As a consequence, if B is a braid of monitor hierarchy H, then B ∪H is a braid of same

monitor.

For the braid of Figure 1.7 for example, the cut πmin(π1) = πmin(π2) = π1∨π2. Moreover,

the case when two Smin(x) are ordered is instructive:

Proposition 1.8. Let π1, π2 ∈ Π(E,B) be two cuts of a braid B of monitor H. Let

Smin 1(x) and Smin 2(x), the classes at x of the two associated l.u.b.. If Smin 1(x) ⊆
Smin 2(x), then Smin 2(x) is the support of a partial partition of π1.

Proof. The proposition is obviously true when Smin 1(x) = Smin 2(x). Suppose that

Smin 1(x) 6= Smin 2(x). Let y ∈ Smin 2(x)\ Smin 1(x) and Smin 1(y) be l.u.b. class of π1

at point y. As y ∈ Smin 1(y) ∩ Smin 2(x), which are both classes of the hierarchy H, we

have either Smin 1(y) ⊃ Smin 2(x) or Smin 1(y) ⊆ Smin 2(x). The first case is impossible for

Smin 1(x) is not empty, and Smin(x) and Smin(y) are disjoint, thus Smin 1(y) ⊆ Smin 2(x).

As this inclusion is satisfied for all points y ∈ Smin 2(x)\Smin 1(x), we finally obtain that

π1 u {Smin 2(x)} is a partition of Smin 2(x).

Figure 1.7 illustrates the lower bounding Smin 1, Smin 2 classes in proposition 1.8.
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1.3.3 Motivations

The braid structure by itself can be seen in problems of segmentations and evaluation.

We state briefly the interest of the braid of partitions.

• This type of nested structure is already well known in the area of super-pixel

merging, and the generation of “segmentation-soup” in Malisiewicz et al. [69],

where the use of segmentation merging is proven emperically to improve detection

support. Furthermore this improvement in detection due to the merging operation

is shown to be independent of the segmentation algorithm producing the family of

partitions.

• Uncertain partition boundaries produce many possible partial partitions corre-

sponding to the same image values, based on the algorithm used, and the quality

measured used to evaluate the segmentation. For further details on the study of

segmentation evaluation, please refer to Unnikrishnan et al. [115]. This has been

demonstrated in figure 1.8. They introduce segmentation evaluation measure, Nor-

malized Probability Rand (NPR) index, which is a meaningful measure in that it

only penalizes fragmentation in regions that are unsupported by the ground-truth

images, and allows refinement without penalty if it is consistently reflected in

the ground-truth set. We aimed in creating the braid structure to handle similar

problems in hierarchical partition structure. This basically enables accommodate

boundary ambiguity, which is basically different machine segmentation of regions

with contours characterized by varying gray-scale or color gradient values.

• Multivariate segmentations operate on independent functions, like the case of

hyper-spectral segmentations or RGB color images. Partition contours here could

have a braid structure given certain compositions of functions. Furthermore, one

can envisage a composition of segmentations resulting from independent channels,

provided they have a non-trivial braid structure.

• The primary motivation is the use of the braid in Breiman’s dynamic program

that calculated optimum on hierarchies. In this thesis we show that the dynamic

program works for a larger class of partitions which is the braids and further more it

ensures better optimum than hierarchies, when operating on braids with non-trivial

monitors. This is further discussion in detail in section 1.5, and demonstrated in

figure 1.14.
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Figure 1.8: No single Ground truth segmentation is a refinement of the mean-shift
segmentation, but their suprema are. This is a result in the inconsistent partition
contours in case of both the human and machine based mean shift segmentation. Image
reproduced from Unnikrishnan et al. [114, 115]. This helps handle boundary ambiguity.

1.4 Energetic lattices of braids

First of all, what does “minimal cut” mean? A cut of minimal energy? For a finite set of

only 25 leaves partitioning E generates 0.5×1018 different potential partitions, following

the bell’s number. The set of all energies, which is in practice an interval in the positive

integers, risks to be too poor for the purpose, and we may try and act directly on some

lattice of cuts, which should of course involve the energy ω by some modalities. Then

the existence and uniqueness of minimal cuts will be ensured by this lattice structure

itself.

In figure 1.9 we demonstrate how one can obtain multiple optimal cuts. One requires

singular energies to ensure the existence of a unique optimum.

Definition 1.9. Let ω be an energy on the partial partitions D(E), and B be a braid B

of monitor hierarchy H. Energy ω is singular when

(i) the energy ω({S}) of every class S of H is either strictly smaller, or strictly greater,

than the energies of all partial partitions of B of support S:

∀ π(S) ∈ Π(S), ω({S}) < ω(π(S))} or ω({S}) > ω(π(S))}, (1.21)

(ii) if ∀π1, π2 ∈ B and π1 ∨ π2 = {S} ∈ Π(E,H), then ω(π1) 6= ω(π2).

This is demonstrated in figure 1.9. Definition 1.9 extends the cone structure at point x

defined for hierarchies (i.e. i ≤ j ⇒ Si(x) ≤ Sj(x)). In a braid several different classes

S1
i (x), S2

i (x) etc., may coexist at the same level.
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10

3 5

1.5 1.5 1 3 1

Figure 1.9: A hierarchy with multiple optimal cuts with the same energy. One requires
the general condition of singularity to ensure the existence of a unique optimum. In
a hierarchy, an arbitrary energy ω becomes singular when the parent picked w.r.t its

children in case they have equal energies.

π ∨ π′

ω(π′ u S) = 50 ω({S′}) = 60
π′

{S} {S′}

ω({S}) = 45 ω(π u S′) = 35
π

Figure 1.10: An example of energetic ordering: We have π �ω π′ since in each class
of π ∨ π′, the energy ω of π is lesser than or equal to that of π′.

1.4.1 Energetic ordering

Consider two partitions π1, π2 of E, and the class S of the refinement supremum π1∨π2

at point x ∈ E. S is the support of two p.p. a1 of π1 and a2 of π2 (see Figure 1.10).

Intuitively, one may assess that, in some sense, π1 is less energetic than π2 for an energy

ω when ω[π1 u{S}] ≤ ω[π2 u{S}] in each class of π1 ∨π2. This intuition is true and has

the meaning of an ordering relation when ω is singular and B is a braid.

Theorem 1.10. Let Π be a family of partitions of E, and let π1, π2 ∈ Π. Given an

energy ω, the partition π1 is said to be less energetic than π2, and one writes π1 �ω π2

when in each class of π1 ∨ π2 the energy of the partial partition of π1 is smaller or equal

to that of π2: :

π1 �ω π2 ⇔ {S ∈ π1 ∨ π2 ⇒ ω(π1 u {S}) ≤ ω(π2 u {S})} (1.22)

The relation �ω is an ordering relation for all singular energies ω, if and only if the

family Π(E) is the set of cuts of a braid.

Proof. The reflexivity is obvious. For the anti-symmetry, we observe that π1 �ω π2 and

π2 �ω π1 involve the same refinement supremum π1 ∨ π2. Therefore in any S ∈ π1 ∨ π2
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the energies of π1 u {S} and π2 u {S} are the same (Rel.(1.22)). Then the singularity

imposes that these two partial partitions are identical.

As for transitivity, consider three elements π1, π2, π3 ∈ B, with

π1 �ω π2 (a) and π2 �ω π3 (b) (1.23)

We must prove that π1 �ω π3. Let V1 (resp. V2, resp. V3) be the class of π1 at point x,

and S1 = Smin(V1) (resp. S2, resp. S3). The classes S1, S2, S3 of H, which contain the

point x, are thus ordered in one of the possible three manners S1∪S3 ⊆ S2, S1∪S2 ⊆ S3,

or S1 ∪ S2 ⊆ S3. Suppose firstly that in the first case S2 = S3 thus S1 ⊆ S3. The

proposition 1.8 tells us that S3 is the support of a p.p. of π1, and according to Rel.(1.23)

the restrictions of π1, π2, and π3 to this support satisfy ω(π1 u S3) ≤ ω(π2 u S3) and

ω(π2 u S3) ≤ ω(π3 u S3), so that the transitivity is satisfied at point x. The same proof

still applies for S1 = S3, and extends to the two other cases by circular permutation.

If S1∪S3 ⊂ S2, then there exists a partial partition a3 of π3 such that {S3}ta3 has S2 for

support, and Rel.(1.23b) implies that ω({S2}) ≤ ω({S3} t a3), thus by singularity that

ω({S2}) < ω({S3}ta3). Similarly, the inclusion S1 ⊆ S2 leads to ω({S1}ta1) < ω({S2})
(by applying Rel. (1.23a)), which contradicts the singularity axiom. Therefore, the two

possible orders are S1 ∪ S2 ⊆ S3 and S2 ∪ S3 ⊆ S1.

If S1∪S2 ⊂ S3, there exist two p.p. a′1 and a′2 with {S1}ta′1 = {S3} and {S2}ta′2 = {S3}.
By Rel. (1.23b), we find ω({S2}ta′2) ≤ ω({S3}). Then by singularity, all p.p. of S3, thus

{S1} t a′1, have an energy ≤ ω({S3}), so that ω({S1} t a′1) ≤ ω({S3}), which shows the

transitivity at point x. If S2∪S3 ⊆ S1, the same proof yields the same conclusion. Since

local transitivity is true for all point x ∈ E, the relation π1 �ω π2 itself is transitive.

For the “only if” statement, we have to prove that the ordering vanishes either when ω

is not singular, or when B is not a braid. Consider first an ordering �ω whose energy

is not singular, and two cuts π and π′ identical everywhere except in the class S′(x) of

π′, where π is locally the p.p. a. Suppose that ω(a) = ω(S′(x)). This implies π �ω π′

and also π′ �ω π. However we do not have π′ = π since a 6= S′(x). Thus singularity

is needed. Suppose now ω singular, and applied to the three partitions π1, π2, and π3

as indicated in Figure 1.11. These three partition do not belong to a braid, because

the three classes of π1 ∨ π2, π2 ∨ π3, and π3 ∨ π1 at point x are not nested. We have

π1 �ω π2, π2 �ω π3 but not π1 �ω π3, which achieves the proof.

The “only if” part of the theorem means that the braids, and their cuts, have the exact

level of generality to work. As a consequence, all the downstream results which involve

the theorem, including energetic lattices and constraint minimizations, are valid for braid
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1 1 1 1

π1

1 1 2 1 1

π2

3 4 1

π3

1 1 1

π1 ∨ π2

3 4 1

π2 ∨ π3

2

π3 ∨ π1

x

Figure 1.11: The three partitions π1, π2,and π3 cannot come from a braid, because
the three classes of π1 ∨π2, π2 ∨π3 and π3 ∨π1 at point x are not nested. The values of
energy ω for the classes are indicated above them, and the energy of a p.p. is the sum

of its classes. The transitivity of the relation �ω is not satisfied.

cuts only. If one wants to build up energetic orderings on other families of partitions,

the energy ω must be more specified.

1.4.2 Energetic lattice

Given the energy ω, the cuts of any braid B form a complete lattice structure w.r.t.

their energetic ordering �ω. We will prove it in two steps, by beginning with the finite

families of cuts

Lemma 1.11. Any finite family of cuts {πj , j ∈ J} in Π(E,B) admits a greatest lower

bound fωπj and a lowest upper bound gωπj.

Proof. As the family is finite, it suffices to prove the results for the pairs of partitions

π1, π2 ∈ {πj , j ∈ J}. In each class S of the refinement supremum π1 ∨ π2 the three p.p.

{S}, {S} u π1, {S}u π2 have three energies which are different by singularity. One can

always choose the less (resp. most) energetic one. By doing the same for all classes of

π1 ∨ π2 we obtain the unique largest lower-bound π1 fω π2 (resp. smallest upper bound

π1 gω π2) of π1 and π2, which achieves the proof.

Theorem 1.12. Let B be a family of partitions of E, and ω be a singular energy. The

set of all cuts of B forms a complete lattice Π(ω,E,B) for the energetic ordering �ω
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π1

π2

π1 ∧ω π2

x y

11 6

50 1 8 20

10 8

Figure 1.12: Energetic infimum of three partitions: At point x we look for the largest
class to be less energetic than the constituting internal p.p., this is π2 and at point y it

is the class of π1. The energetic infimum fω is the partition drawn at the bottom.

if and only if B is a braid. Given a family {πj , 1 ≤ j ≤ p} of cuts in Π(ω,B), the

infimum fωπj (resp. supremum gωπj) is obtained by taking the p.p. of lowest energy

(resp. highest energy) in each class of the refinement supremum ∨πj.

Proof. If B is not a braid, the relation �ω does not define an ordering. Suppose B to be a

braid, and let {Sj(x)} be set of all classes at point x for a family {πj , j ∈ J ⊆ I} of cuts of

B. We saw that these classes form a cone, and that their union SM (x) = ∪Sj(x), which

belongs to H, has a finite number of leaves. Therefore the number of possible partitions

of these leaves is finite, as well as the number of different partitions πju{SM (x). Lemma

1.11 applies and leads to the local infimum ∧[πj u {SM (x)}]. The global infimum is

obtained by making x vary, i.e. ∧πj = t{∧[πj u {SM (x)}], x ∈ E}. By duality, we have

also ∨πj = t{∨[πj u {SM (x)}], x ∈ E}, which achieves the proof.

The universal infimum of the lattice Π(E,B) is denoted by π∗ = fω{π, π ∈ Π(E,B)}.
It is the unique cut of B smaller than all the other cuts of Π(E,H) for the ordering

�ω. Remarkably, the theorem was established without assuming any linearity, or h-

increasingness, or sub-modularity, of the energy ω. The theorem is prior to these notions,

though they will be useful later.

Figure 1.12 depicts a toy example of the energetic infimum fω for a HOP.

1.4.3 The three lattices

The assumption of singularity is crucial. If we drop it, we lose all theorems of this paper

which involve energetic lattices: the scale increasingness structure is no longer valid, the

Lagrange model is undefined, etc.. Fortunately, the singularity hypothesis is not very
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restricting in practice, where most of the energies admit a singular version, up to minor

changes.

In the notation, the three symbols ≤,∨, and ∧ (without ω subscript) are allocated to the

refinement lattice Π(E,B), and �ω,gω and fω to the energetic lattice Π(ω,E,B). The

expression “minimal cuts” always refers to energy infima fω, the only ones for which

the expression makes sense (the refinement universal infimum is the leaves partition).

Moreover, the meaning of the energy infimum is twofold:

Proposition 1.13. The minimal cut π∗ of Π(ω,E,B) is not only the fω infimum of

the family of all cuts, but it is also less energetic than every cut π in each class of π∨π∗.
It thus turns out to be both local and global.

Three lattices (and orders) interact on the family of cuts of a braid B:

1. Numerical lattice ( ≤,∨, and ∧) for the energies ω,

2. Refinement lattice ( ≤,∨, and ∧) for the cuts of B,

3. Energetic lattice Π(ω,E,B), again for the cuts (�ω,gω,fω)

h-increasingness in section 1.5, studies the relations between the energetic and numerical

order of energies as will be demonstrated in relation (1.25).

Remark 1.14. (Finite energies) Energetic lattices allow for infinite image domain on

account of its local nature. Consider a finite window Z centered at the origin, and

Zh translated by h. Suppose now that all classes encountered within Zh have finite

energies, as do their partial partitions. When not the energies these classes and are

infinite. Then, for any point in the space, the cone of classes containing the point, given

that the energies of these classes in the cone are finite, of course except E, one can

determine now the class forming the minimal cut, containing said point.

1.5 h-increasing energies

This section is devoted to the links between an energetic ordering �ω on the cuts Π(E,B)

and the numerical ordering of the energies of these cuts. The theorem 1.12 says nothing

about the energy of a minimal cut, and does not tell whether the energetic ordering

π �ω π′ between two cuts implies the same sense of variation for the energies themselves,

i.e. ω(π) ≤ ω(π′). Indeed, one easily sees that it is not always the case. For example,

take for singular energy ω(π) = 0 (resp. 1) when the number of classes of the p.p. π
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is odd (resp. even), and greater than 1, the energy of the one class partitions being 2.

Then, in Figure 1.10, π �ω π′ whereas ω(π) = 1 and ω(π′) = 0. A new condition is

needed, namely that of h-increasingness:

Definition 1.15. (h-increasingness) Let (ai, a
′
i) be elements of two different p.p. of the

same support Si, and {Si, Si ∈ E, i ∈ I} a family of disjoint supports. A finite singular

energy ω on the partial partitions D(E) is h-increasing when for every triplet {ai, a′i,
Si ∈ E, i ∈ I} one has, ∀i ∈ I:

ω(ai) ≤ ω(a′i) ⇒ ω(tai) ≤ ω(ta′i) (1.24)

When in addition one has ω(ai) < ω(a′i) for one i at least, and when this leads to

ω(tai) < ω(ta′i), then the energy ω is strictly h-increasing.

For example, a linear energy, i.e. an energy where ω(tai) is the sum of the ω(ai) is

h-increasing, an even strictly h-increasing since

ω(ai) < ω(a′i) for all i ∈ I ⇒ ω(tai) < ω(ta′i).

Unlike, the h-increasing energy ω(tai) =
∑
ω(ai) when

∑
ω(ai) < K and = K when

not, is not strictly h-increasing. Figure 1.13 shows the geometrical meaning of the

h-increasingness.

Here we demonstrate in figure 1.13 the h-increasingness condition generalized to the

BOP(bottom), along with the HOP where we necessarily have an ordering of partial

partitions on a given support as seen in figure 1.27.

When operating on parametrized energies, across various parameter values, please refer

to scale increasingness.

1.5.1 The two orderings � and ≤

h-increasingness bridges the gap between the energetic ordering �ω for partitions and

the numerical ordering of their energies. Consider two cuts π and π′ of a braid B, and

denote by {Si, i ∈ I } the set of all classes of π ∨ π′. If ai and a′i stand for the p.p.

of support Si of π and π′ respectively, and ω for a h-increasing energy, then the left

member of (1.24) means that π �ω π′ and the right one that ω(π) ≤ ω(π′), hence:

π �ω π′ ⇒ ω(π) ≤ ω(π′). (1.25)
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Figure 1.13: An example of hierarchical increasingness on HOP(top) and
BOP(bottom). We see that the condition of h-increasingness holds generally for any

family of partial partitions.

with in particular

π∗ = fω{π ∈ Π(E,B)} ⇒ ω(π∗) = ∧{ω(π), π ∈ Π(E,B)} (1.26)

The converse is false for a general case, since several cuts can share the same energy, as

demonstrated in figure 1.9. However in case of strict h-increasingness the minimal cut

is unique, and is infimum of the energetic lattice.

Proposition 1.16. When energy ω is strictly h-increasing, and the set Π(E,B) is finite,

then implication (1.26) becomes an equivalence.

Proof. By uniqueness of the minimum in the ω-lattice, π∗ ≺ π for π ∈ Π(E,B)\π∗.
It means that there is a class S of π∗ ∨ π such that ω(π∗ u {S}) < ω(π u {S}). By

strict h-increasingness, this gives ω(π∗) < ω(π), and by finiteness ω(π∗) < ∧{ω(π), π ∈
Π(E,B)\π∗}. Therefore, if a cut π ∈ Π(E,B) has ω for energy, it can only be π∗.

The axiom of h-increasingness has already been introduced in [59] for the case of a finite

number of classes by the Rel.(1.27) below. The above definition 1.15 generalizes it to

infinite situations:

Proposition 1.17. When the family {ai, a′i ∈ D(E), i ∈ I} of Definition 1.15 is finite,

then the h-increasingness is equivalent to:
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ω(a) ≤ ω(a′) ⇒ ω(a t a0) ≤ ω(a′ t a0), a, a′ ∈ Π(S,B) (1.27)

where a and a′ are two p.p. of same support S, and where a0 is a p.p. of support S0

disjoint of S.

Proof. The implication (1.24) ⇒ (1.27) is obvious. For the reverse sense, consider the

two pairs (a1, a
′
1) and (a2, a

′
2). The relation (1.27) allows us to write

ω(a1) ≤ ω(a′1) ⇒ ω(a1 t a2) ≤ ω(a′1 t a2)

ω(a2) ≤ ω(a′2) ⇒ ω(a′1 t a2) ≤ ω(a′1 t a′2)

hence ω(a1 t a2) < ω(a′1 t a′2). Under iteration, this inequality extends to any finite

family {ω(ai), ω(a′i), i ∈ I}, i.e. to Relation (1.24).

1.5.2 Minimal cut and h-increasingness

The finite definition (1.27) yields a dynamic algorithm for scanning the classes of H or

B only once :

Proposition 1.18. Let H be a hierarchy, and ω be a singular energy on D(E). Consider

a node S of H with p sons T1..Tp of optimal cuts π∗1, ..π
∗
p. The cut of optimal energy of

S is either the cut

π∗1 t π∗2.. t π∗p, (1.28)

or the one class partition {S} itself, if and only if ω is h-increasing.

Proof. We firstly prove that the condition in (1.27) is sufficient. The h-increasingness of

the energy implies that the cut in (1.28) has the lowest energy among all the cuts in the

family Π′(S) = t{π(Tk); 1 ≤ k ≤ p}, and this cut is unique by singularity. Now, every

cut of S is either an element of Π′(S), or S itself. Therefore, the set formed by the cut

(1.28) and S contains the optimal cut of S.

Conversely, suppose that π∗1tπ∗2..tπ∗p is a cut of optimal energy for the partial hierarchy

H(S). It means that when we replace π∗1 by another cut π1 of T1, i.e. such that ω(π1) ≥
ω(π∗1), then π1 t π∗2.. t π∗p has an energy ≥ than that of π∗1 t π∗2.. t π∗p. As this is true

for all partial partitions of E, the energy ω is therefore h-increasing.

There is an obvious extension to the family of Braids.
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To compare the energy of the one class partition {S} to the energies of all its descendants,

it suffices to compare S to its sons. The lower descendants do not intervene. Moreover,

if ω is not singular, one can always decide to choose ω({S}) when ω({S}) = ω(π), π ∈
Π(S,B). This choice makes ω singular and preserves its h-increasingness (Proposition

4.4 of [59]).

What happens if we drop the singularity axiom in proposition 1.18? We risk to meet a

node S which has the same energy as the p.p. of its sons. This event introduces two

solutions which are then carried over the whole induction. And since such a doublet

can occur regarding any node S ∈ H, the number of minimal cuts may become huge.

However at each node S, there is always, among the solutions, a larger partition (for the

refinement). By ordering the solutions, we thus structure them in a complete lattice.

uniqueness reappears, but the question “find the cut that minimizes the energy” has

been replaced by “find the largest (or the smallest) cut that minimizes the energy”.

Instead of using the refinement, we can, alternatively, introduce a second optimization.

For example, for color images, ω can hold on the luminance, and the criterion for choosing

between the optimal cuts can derive from the product saturation× hue.

Figure 1.14: An elementary step of the dynamic program in a braid structure over a
support S. The partial optimal cut in each sub-branch is shown. The final step is to
compares energies ω(S), ω(π∗1(S)), ω(π∗2(S)), where one picks the partial partition with
the least energy. Furthermore one needs to implement a consistent rule to obtain a

unique solution, in other words, one needs to implement a singular energy.

Dynamic Program over Braid:

As demonstrated in figure 1.14, the dynamic program substructure would now consist

in making a choice between the parent supremum (if it is a class of the braid), and the

partial partitions that it monitors. We consider in the figure a braid composed of two

hierarchies (this is to be able to index the partial partitions.). We can now write the

dynamic program step first shown for HOP in equations 1.16 and 1.17, now for the BOP:
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ω∗(π(S)) = min

{
ω({S}),

∑
a∈π1(S)

ω(a),
∑

b∈π2(S)

ω(b)

}
(1.29)

π∗(S) =


{S}, if ω({S}) ≤ min(

∑
a∈π1(S) ω(a),

∑
b∈π2(S) ω(a))

π1(S), if ω(π1(S)) < min(ω({S}),
∑

b∈π2(S) ω(a))

π2(S), if ω(π2(S)) < min(ω({S}),
∑

b∈π2(S) ω(a))

(1.30)

Equation (1.30) demonstrates a subtructure very similar to the hierarchies except now

they are applied to the classes of the BOP B. When the energies ω(πa(S)) = ω(πb(S)),

and ω(πa(S)) < ω({S})), we can either pick randomly, as long as we pick one of the

partial partitions, so that in a strict sense to keep the energies remain singular.

When a composition of multiple hierarchies Hi, i ∈ {1, 2, ..., n}, leads to a braid of

partitions B with a monitor H ′, the dynamic program on a braid consists of either:

• the (n+1)-ary choice between the partial partitions from the n hierarchies, and

the monitoring supremum (if considered part of the braid), or

• Independent dynamic programs in the n hierarchies, when the monitoring hierar-

chies is trivial, i.e. H ′ consists of the complete space as a single class {E}, for all

compositions of partitions from the n-hierarchies. In such a case the braid struc-

ture does not improve the minimum energy of the optimal cut achieved globally.

1.5.3 Simple example for a non h-increasing energy

Number of classes N(π) Energy ω(π)

1 1
2 2
> 2 0

Figure 1.15: For the example energy demonstrated in the table, the energy of a partial
partition depends on the number of its classes, by a non h-increasing rule.
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40 1.6. H-INCREASING COMPOSITIONS AND MINKOWSKI NORMS

The energy ω in table given in figure 1.15 is a singular energy, which implies that it

endows the solution space with a unique minimal cut. But this ω, is not h-increasing!

We show by a quick demonstration of the lack of a dynamic program to reach the

optimum on account of combinatorial explosion.

E

S c

a b c

ω(π0(E)) = 0

ω(π0(S)) = 2 ω(π0(c)) = 1

ω(π1(E)) = 2

ω(π2(E)) = 1

E

S c

a b c

Figure 1.16: Figure demonstrating, initial hierarchy with cuts and their energies(left),
the minimal cut by dynamic program(center) is π2(E), and the true minimal cut by
observing the minimum directly is π0(E), the leaves(in white). The dynamic program
fails to extract the minimal cut, and produces E as the minimal cut (in gray). This
as well implies that we can not use the global-local property of the energy’s optimum,

even if the energy is singular.

1.6 h-increasing compositions and Minkowski norms

h-increasingness is a property of energies, which preserves the optimal substructure in

extracting the minimal cut problem so that one can use a dynamic program to solve it.

As one can see, linear compositions is not the only way to ensure that the optimal cut

remains, in the provisional optima of bottom up scan in the hierarchy.

The two common modes of composition are by addition and supremum. The additive

mode was studied by Guigues under the name of separable energies [47, 49] a context in

which he established the Rel.(1.44) below. Denote by {Tu, 1 ≤ u ≤ q} the q sons which

partition the node S, i.e. π(S) = T1 t ..Tu.. t Tq. Provide the simply connected sets of

P(E) with an arbitrary energy ω, and extend it from P(E) to the set D(E) of all partial

partitions by using the sums

ω(π(S)) = ω(T1 t ..Tu.. t Tq) =

q∑
1

ω(Tu). (1.31)

Just as the sum-generated ones, the ∨-generated energies on the partial partitions are

defined from an energy ω on P(E) followed by a law of composition, which is now the

supremum.

ω(π) = ω(T1 t ... t Tn) = ∨{ω(Ti)}. (1.32)
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Both laws are indeed particular cases of the classical Minkowski expression

ω(π(S)) =

[ ∑
u∈[1,q]

ω(Tu)α
] 1
α

(1.33)

which is a norm in Rn for α > 0. Even though over partial partitions D(E), it is no

longer a norm, it yields h-increasing energies for all α ∈ [−∞,+∞]:

Proposition 1.19. Let E ∈ P(E), let ω : P (E)→ R+ be a positive or negative energy

defined on P(E). Then the extension of ω to the partial partitions D(E) by means of

Relation (1.33) is h-increasing.

Proof. We have to prove the relation (1.27), for any two partial partitions π and π′ of

S. When α ≥ 0, the mapping α
√
∗ on R+ is increasing and, according to Relation (1.33),

the inequality ω(π) ≤ ω(π′) implies

q∑
1

[ω(Tu)]α ≤
q′∑
1

[ω(T ′u)]α (1.34)

which in turn implies, for the same reason

q∑
1

[ω(Tu)]α + ω(π0) ≤
q′∑
1

[ω(T ′u)]α + ω(π0) (1.35)

hence ω(π1 t π0) ≤ ω(π2 t π0).

When α ≤ 0, the sense of the inequality changes in relations (1.34) and (1.35) but changes

again when taking the α
√
∗ in (1.35), which again lead to ω(π1 t π0) ≤ ω(π2 t π0), and

achieves the proof.

Note that the relation 1.33 preserves order: the optimal cut does not change when the

energies of the classes are multiplied by the same constant. One can easily check that

the proposition remains true when ω : P (E)→ R− is a negative energy. Some particular

cases of α are of interest, namely
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42 1.6. H-INCREASING COMPOSITIONS AND MINKOWSKI NORMS

α ω(Ti) Composition Law Applications

−∞ infimum Ground truth energies [61]

−1 harmonic sum -

0 number of classes CART [21]

+1 sum Salembier-Garrido, Guigues [47, 100]

+2 quadratic sum -

+∞ supremum Valero, Veganzones, Soille [107, 118, 121]

which all provide h-increasing energies.

Corollary 1.20. If {αj , j ∈ J} stands for a family of non negative weights, then the

weighed sum
∑
αjωj and supremum

∨
αjωj of h-increasing energies ωj turn out to be

h−increasing.

Unconstrained optimization of the Lagrangian function corresponding to a constrained

optimization problem on the BOP is a case corresponding to this corollary demonstrated

in chapter 2. A number of other laws are compatible with h-increasingness, such as

multiplication.

Minkowski’s norm or power mean: Minkowski’s norm was used by Allene et al.

[3], to relate the Maximum Spanning Forest(MaxSF), to the graph-cut on edge weighted

graphs, with source and sink labels . Cousty et al. related the Minimum spanning

forests and Watershed-Cuts [31] again on edge weighted graphs. This transition between

various algorithms are done by using the q-th power on the gradient weighted edges of

the graph. This preserved the ordering required for the MaxSF and the watershed-cut,

for the limiting value of q → ∞, while producing the graph-cut case for q = 1. This

was further generalized by the seminal work of C.Couprie et al. by introducing the

Powerwatershed framework [28], further regrouping the Random walker algorithm by

Sinop-Grady[106], into a compact energy minimization framework, parameterized by

exponents on the weights on the edges, and its coefficients. In particular when q = 2,

the power watershed leads to a multi-label, scale and contrast invariant, unique global

optimum obtained in practice in quasi-linear time [29].

In our case though, we use the Minkowski-norm to generalize the h-increasing composi-

tion laws, and provide a way to parametrize this choice, and explore this a bit further

in the next chapter, for penalty based constrained optimization.

Significance of exponential parameter α: The value α basically provides a way

to determine a scale of a partition by fixing the energy values of the parents and child

classes. This parameter α has nothing to do with singularity, while it acts in a comple-

mentary way to choose the child or parent classes based on their energies.
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A number of other laws are compatible with h-increasingness, outside the Minkowski

norm generalization, such as the alternating sum-sup composition laws, demonstrated

further down the chapter. Application involving the inf and sum compositions are

demonstrated for in Section 3.

1.6.1 Soille’s Constrained Connectivity and Hierarchies

In this subsection we demonstrate the different ways of enforcing uniqueness while us-

ing different non-linear compositions especially the case of α-flat zones by Soille et al.

[108] and Akcay-Aksoy [2]. Both of these methods choose an optimal cut which ensure

uniqueness and monotonicity conditions.

We provide a quick recall of α-connected components or the quasi flat zones [107, 108].

Following the minimum dissimilarity metric to define a single linkage, Soille et al. define

the α-connected component to be connected sets within which there is at least one path

with a difference in function bounded by α along each pair of points along the path.

Such a path based gradient definition can be defined in R2 while one defines this on a

more accessible pixel-graph with 4-adjacency. This min-metric dissimilarity yields an

ultrametric distance and thus a hierarchy of partitions.

α-CC(x) = {x} ∪ {y|∃P (x→ y) : ∀xi ∈ P (x→ y)} ∧ xi 6= y, d(xi, xi+1) ≤ α. (1.36)

The α-connected component for a hierarchy with increasing α. In other words,

α-CC(x) ⊆ α′-CC(X), ∀α ≤ α′

The problem with such connected components, like with single linkage is the chain-

ing effect which produces very long chains with small path-wise differences, even when

the global contrast (max-min) maybe we large. For such cases Soille et al defines the

(α, ω-connected component containing a point x is the largest αi-connceted component

containing x with its global range (sup f(y)− inf f(y), y ∈ αi-CC(x)) ≤ ω.

(α, ω)-CC(x) ⊆ (α′, ω′)-CC(X), ∀α ≤ α′, ω ≤ ω′
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44 1.6. H-INCREASING COMPOSITIONS AND MINKOWSKI NORMS

1.6.1.1 (α, ω)-components composed by supremum

The simplest ∨-composition of energies consists like comparing the supremum of the

energies of the classes in the child w.r.t the parent energy. Here we will see that in

the (α, ω)-connected component hierarchy, the maximal (α, ω)-component is a choice

between parent component and child components that binarized global range parameter

ω, and picks the largest. We are lucky here that the ω corresponding to our energy

over partial partitions and the ω for the global contrast term in α, ω-components are

the same!

Consider a binary ∨-energy ω such that for all π, π0, π1, π2 ∈ D(E) we have

ω(π(S)) = 1 ⇒ ω(π(S) t πx) = 1, (1.37)

ω(π1(S)) = ω(π2(S)) = 0 ⇒ ω(π1(S) t πx) = ω(π2 t πx). (1.38)

This binary ∨-energy is obviously h-increasing. A numerical function f is now as-

sociated with hierarchy H. Consider the range of variation δ(S) = max{f(x), x ∈
S}−min{f(x), x ∈ S} of f inside set S, and the h-increasing binary energy ωk(〈S〉) = 0

when δ(S) ≤ k, and ωk(〈S〉) = 1 when not. Compose ω according the law of the supre-

mum, i.e. π = t 〈Si〉 ⇒ ωk(π) =
∨
i
ωk(〈Si〉). Then the class of the optimal cut at point

x ∈ E is the larger class of H whose range of variation is ≤ j. When the energy ωk of

a father equals that of its sons, one keeps the father when ωk = 0, and the sons when

not. As k varies a climbing family is generated.

1.6.2 Dominant ancestor by supremum

Here is an example of ordered energy due to H.G.Akcay and S. Aksoy [2] who study

airborne multi-bands images and introduce (up to a small change) µ(S) =Area (S) ×
(mean of all standard deviations of all bands in S). They work with energy maximization.

Allocate a non negative measure µ(S) to each node of a hierarchy H, where µ takes its

values in a partially ordered set M , such as a color space. The energy ω is ordered by

the two conditions

ω(S) ≤ ω(S′) ⇔ S ⊇ S′ & µ(S) ≥ µ(S′) S , S′ ∈ P(E), µ ∈M . (1.39)

The node S∗ of the optimal cut at point x is the highest more energetic than all its

descendants. The optimal cut π∗ is obtained in one pass, by Guigues’ algorithm [49].
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The dominant ancestor pruning is also seen in the maximum decision rule by Valero et

al. [118]. The pruning decision consists of a maximum decision rule which considers

that a node is removed if and only if all its descendant nodes can be removed.

1.6.3 Composition of ∨-generated energies

Though the weighted supremum of ∨-generated energies is h-increasing (Prop. ??),

the infimum is not. In practice, this half-result is nevertheless useful, since the ∨,

paradoxically, expresses the intersection of criteria. For example, when the function f

to optimize is color, one can take for energies:

• ω1(S) = 0 when range of luminance in S < k1, and ω1(S) = 1 when not,

• ω2(S) = 0 when range of saturation in S < k2, and ω2(S) = 1 when not.

Then the h-increasing energy ω1(S) ∨ ω2(S) = 0 when S is constant enough for both

luminance and saturation.
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Figure 1.17: Optimal cuts for composition laws: addition, (α, ω)-component supre-
mum and Akcay’s refinement ordering. For the composition by addition, one compares
the energies of parent and sum of energies of child nodes. For the binary energy based
supremum, in the current example each node consists of αi-components and the value
withing each component is the global contrast parameter ω. Here we demonstrate a cut
for which the ω ≤ 20. Though this is not a direct composition by supremum. Finally
in the Akcay’s refinement ordering example the optimal cut picks nodes whose descen-
dants are all smaller that itself. This requires a two pass algorithm. According to the
application other laws may be used e.g. both supremum and infimum for the proximity
of ground truth with Hausdorff distances [61]. It is interesting to note that the unique-
ness conditions in all the 3 cases have been assured by choosing the smallest/largest

amongst the optimal cuts in the different cases.

Figure 1.17 shows optimal cuts for three different laws of composition. In a) the additive

mode chooses the father S, when ω(S) ≤
∑

ω(Tj). In b) the mode by supremum chooses

the S, when ω(S) ≤ ∨ ω(Tj). Finally, in c) one takes the largest node which is more

energetic than all its descendants (maximization of ω).

45



46 1.6. H-INCREASING COMPOSITIONS AND MINKOWSKI NORMS

1.6.4 h-increasingness and generalizing DP

Now we describe how the h-increasingness from equation (1.24) provides a non-linear

and multi-scale generalization of the dynamic program (DP) in equation (1.17).

The separability condition defined by Guigues is generalized for non-linear compositions

while still maintaining the monotonicity of cuts. h-increasingness preserves the order

of energies across partial partitions during the intermediary steps DP. This enables one

to interleave different composition of energies, thus creating a richer way to describe

multi-scale energies.

For example consider the following multi-scale energies:

ω(π(S)) =


∑

a∈π(S) ω(a), if Level(π) ≤ N
2

supa∈π(S) ω(a), otherwise.
(1.40)

This energy of partial partition π(S) is linearly composed for all partial partitions that

are contained in partitions whose level in the hierarchy is below N/2, where N cor-

responds to the total number of levels. Above N/2 all partial partitions energies are

composed supremum.

1.6.5 Composition by alternating sum-supremum

We see in figure 1.18 that the optimal cut in such a case is obtained using h-increasingness

condition even when we alternate with compositions of addition and supremum. This is

very similar to max-pooling in neural networks. One important observation is that the

sum-supremum optimal cut is lower-bounded by the optimal cut by supremum, while

upper-bounded by the optimal cut by addition. This is the case since

∑
Ti∈π(S)

ω(Ti) ≥
∧

Ti∈π(S)

ω(Ti) (1.41)

One method to be able to obtain set of cuts between the those of addition and supremum

is to alternate the composition rules, but this would still have the problem of choosing

parents when supremum is smaller but the sum is not, and vice versa. To this effect

we can also consider the h-increasing α-cuts from equation 1.33, that has no effect on

the supremum, but produces cuts that are finer than the composition by sum. By

alternating the composition laws one can span finer cuts between the composition by

sum and supremum. One can refer to [71] where the Masci et al. proposes a neural
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Figure 1.18: This demonstration shows an alternating composition: at each odd level
we compose the energies by addition while at each even level we compose the energies
by supremum. It’s notable that the supremum of child energies is always smaller than

or equal to their parent energies.

network structure that learns the morphological structuring element and the composition

of operators. The pooling step in such operations are by supremum.

In summary h-increasingness condition applies to composition by addition, supremum

as well as infimum. It helps generalize the optimal substructure in the dynamic program

that chooses between parent or child based on their energies. h-increasingness applies in

case of braids too, which requires a choice now between the monitoring supremum class

and the set of child partial partitions being monitored. When the monitor hierarchy

does not belong to the braid, the choice is just between the child partial partitions.

One can see an example of an alternating composition in Veganzones-Channusot et als.

[121] work on the obtaining an optimally pruned binary partition tree. Here they propose

multiple models to perform spectral-unmixing on the BPT, using the variants on the

Lagrangian model. One can also find work on optimal pruning on the BPT for region

based hyper-spectral image segmentation, by Valero [118]. This thesis demonstrate how

one can extend compositions to a multidimensional setting.

We shall see an example of infimum in the applications involving partition extraction

based on local Hausdorff measures.
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1.7 Scale increasing families of energies

We first begin by comparing the energetic ordering �ω with that ≤ of the refinement,

when both apply on the partitions Π(E,B). At a first glance, combining these two

structures is not very intuitive. This is because they do not hold on the same features of

the partitions Π(E,B). But we can enlarge the scope and consider a family {ω(λ), λ ∈
R} of singular energies which act on Π(E,B). Each energy ω(λ) induces a minimal cut

π∗(λ).

Remark 1.21. How are the minimal cuts structured as scale parameter λ varies?

In other words what conditions of monotonicity can we establish in the given energetic

lattice structure.

1.7.1 Scale increasingness

We will define now a generalized monotonicity property, namely scale increasingness of

the family {ωλ}:

Definition 1.22. A family {ω(λ), λ ∈ R} of energies on the partial partitions D(E) of

E is scale increasing when

λ ≤ µ and ω({S}, λ) ≤ ω(a, λ) ⇒ ω({S}, µ) ≤ ω(a, µ), S ∈ P(E), a v {S} (1.42)

These inequalities become strict when the scale increasing ω(λ) are singular energies.

Theorem 1.23. Let {ω(λ), λ ∈ R} be a family of singular energies acting on a braid B =

H∪R, and let {π∗(λ), λ ∈ R} the minimal cuts of the energetic lattices {Π(ω(λ), B), λ ∈
R}. When the family {ω(λ), λ ∈ R} is scale increasing, then the least upper bound

Smin(x | λ) of each class S∗λ(x) of π∗(λ) increases with λ at all points x ∈ E i.e.

λ ≤ µ ⇒ Smin(x | λ) ⊆ Smin(x | µ) x ∈ E λ, µ ∈ R. (1.43)

and the partitions πmin(λ) = t{{Smin(x | λ)}, x ∈ E} form the hierarchy Hmin =

{πmin(λ), λ ∈ R}

Proof. Put Smin(x | λ) = Sλ(x) and Smin(x | µ) = Sµ(x). As H is a hierarchy, we have

either Sλ(x) ⊆ Sµ(x), or Sµ(x) ⊂ Sµ(x). If Sµ(x) ⊂ Sµ(x) Proposition 1.8 shows that

there exists a partial partition aµ of π∗µ of support Sλ(x). The ω(λ)-energy of aµ is ≥
ω({Sλ(x), λ}), because Sλ(x) is a class of the minimal cut π∗(λ) and aµ v {Sλ(x)}. Then

we have by scale increasingness ω({Sλ(x)}, µ) ≤ ω(aµ, µ). On the other hand, as π∗µ is the
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minimal cut for the ω(µ)-energetic lattice Π(ω(µ), B), the p.p. aµ is lessω(µ)-energetic

than its support {Sλ}, i.e. ω(aµ, µ) ≤ ω({Sλ(x), µ}), thus ω(aµ, µ) = ω({Sλ(x), µ}). But

such an equality contradicts the singularity of ω(µ). Therefore we have Sλ(x) ⊆ Sµ(x).

As λ increases, this inclusion characterizes the cone at point x of a hierarchy, namely

that of the partitions πmin(λ) = t{{Sλ(x)}, x ∈ E}, which achieves the proof.

The if part of the theorems already appears in [49] for linear energies. Note that we

also have π∗(λ) �ω(λ) π
∗
µ by scale increasingness (1.42).

Corollary 1.24. The family B = Hmin∪ {π∗(λ), λ ∈ R} is a braid.

Corollary 1.25. When a braid reduces to a hierarchy H, then the minimal cuts gener-

ated on H by the family {ω(λ), λ ∈ R} form a hierarchy, i.e.

λ ≤ µ ⇒ π∗(λ) ≤ π∗µ λ, µ ≥ 0. (1.44)

if and only if the energies {ω(λ), λ ∈ R} are singular and scale increasing.

Proof. For the if part we observe that Rel. (1.43) becomes S(x | λ) ⊆ S(x | µ), thus

π∗(λ) ≤ π∗µ. For the only if part, suppose that there exists a set S ⊆ E for which

ω({S}, λ) ≤ ω(π, λ), π ∈ Π(S,H) does not imply ω({S}, µ) ≤ ω(π, µ), hence implies

ω({S}, µ) > ω(π, µ). It means that {S}, which is a class of π∗(λ), is replaced by π in

π∗µ, so that π∗(λ) 
 π∗µ, which achieves the proof.

The theorem 1.23 was stated for a scalar parameter λ. It extends, however, to the

vector case. Let λ (in bold) be a positive vector in Rp, and {λ1, λ2, ...λp} its p positive

coordinates. The relation

λ ≤ λ′ ⇔ λi ≤ λ′i 1, ...i...p

defines a partial ordering. We can go from λ to λ′ in p “scalar” steps, by firstly changing

only λ1 into λ′1, then λ2 into λ′2,, so on. Between two steps of the sequence we have,

{λ1, λ2, λ3...λp} ≤ {λ′1, λ2, λ3, ..., λp} ≤ {λ′1, λ2, λ3, ..., λp} ≤
{λ′1, λ′2, λ3, ...λp}... ≤ {λ′1, λ′2, λ′3, ..., λ′p},

the vector variation reduces to a scalar one and the theorem 1.23 applies, so that we we

can state: µ
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Corollary 1.26. The relations (1.43) and (1.44) extend to the case when λ = {λ1, λ2, ...λp}
and µ = {µ1, µ2, ...µp} are positive vectors to the Euclidean space Rp.

The following proposition shows how to easily construct scale increasing families:

Proposition 1.27. When the map λ → ω(λ) is increasing, then the family {ω(λ)} is

scale increasing.

Proof. For λ ≤ µ and a ∈ Π(S,B), we have ω(λ, S) ≤ ω(µ, S) and ω(λ, a) ≤ ω(µ, a). By

difference, it comes ω(λ, a)−ω(λ, S) ≤ ω(µ, a)−ω(µ, S). Hence, when ω(λ, a)−ω(µ, S) ≥
0, then ω(µ, a)− ω(µ, S) ≥ 0, i.e. the axiom (1.42).

Usual energies, like ω(λ) = ωϕ + λω∂ , ω(λ) = ωϕ ∨ λω∂ , or ω(λ) = ωϕ ∧ λω∂ lead thus

to hierarchies of minimal cuts. This nice property can be used to compress a hierarchy

by reducing the number levels in a significant manner.

1.7.2 Scale space properties

The theorem 1.23 indicates, indirectly, that the scale increasing families might build up

causal scale-spaces, in Alvarez et Al. sense [4], i.e. induce semi-groups of operators.

Now a semi-group can only be defined when the starting and arrival spaces are the same.

It is not the case with the mapping B0 → π∗(B0). For generating a convenient space, we

have to start from the classes S of B0, and to introduce the set B(S) = B of all braids

whose classes belong to S. Next, we need to provide B with an ordering relation which

extends to braids the set-wise refinement ordering. We can state that B1 = (H1, R1) is

smaller than B2 = (H2, R2) when H1 ≤ H2 and R1 ⊆ R2. The first inequality means

that at each level i ∈ I the partition π1(i) ∈ H1 is smaller than its homologue π2(i) ∈
H2; the second inequality means that there are less partitions in the supplement family

R1 than in R2. This relation is clearly the matter of an ordering a which generates a

lattice on B, where the supremum of B1 and B2 is B = [(H1 ∨ H2), (R1 ∪ R2)], (dual

relation for the infimum).

Let ω be a singular energy acting on B0, and giving the ω-energetic minimal cut π∗.

We observe that π∗ is the same for all braids B, as it depends only on the classes S of

B0. Transform the braid B ∈ B, of monitor H, in the following manner: if at level i

the section π(i) of the monitor H is ≤ π∗ (for the refinement) replace it by π∗; if π(i)

� π∗(λ) don’t change it, and in all cases keep unchanged the additional partitions R of

B. We denote this operation by ϕω(B) = B ⊗B∗.
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Proposition 1.28. When the energy ω is singular, the operation ϕω(B) = B⊗B∗ from

B into itself is a closing.

Proof. The map ϕω is obviously extensive. It is also idempotent because all braids of

B admit the same minimal cut π∗, so that ϕω(B) = B ⊗ B∗ ⊗ B∗ = B ⊗ B∗. Finally,

it is increasing. Let i1 and i2 be the first levels of H1 and H2 where the section is not

replaced by π∗. If B1 ⊆ B2, then we have i1 ≥ i2. Above i1, the sections are those

of H1 and H2; between i1 and i2 the sections of H1 are π∗ and those of H2 are ≥ π∗,

and below i2 the sections of both H1 and H2 are π∗. In all cases ϕ(B1) ⊆ ϕ(B2), which

achieves the proof.

Corollary 1.29. Let {ω(λ), λ ∈ R} be a scale increasing family of singular energies

acting on the braids B ∈ B . The closings {ϕλ, λ ∈ R} of the proposition form the

Matheron semi-group4, i.e.λ,

ϕλϕµ = ϕµϕλ = ϕmax(λ,µ). (1.45)

Proof. The semi-group from equation (1.45) is equivalent to the implication λ ≤ µ ⇒
ϕλ ≤ ϕµ, which is a direct consequence of Rel.(1.44).

The meaning of the semi group is the following: ϕλ replaces the lower sections of H by a

cylinder of section π∗λ. As the parameter λ increases, the cylindric part develops upwards,

and one can start form any “half cylindric” transform ϕλ(B) to get the transform ϕµ(B),

as soon as λ ≤ µ.

1.7.3 The Scale Function Λ

We call Scale function the scale of appearance of each class S in a singular and scale

increasing family {ωλ, λ ≥ 0}. As the parameter λ increases, there happens a first λ

such that ωλ({S}) < ωλ(π), π ∈ Π(S,B). Following Guigues [49], we denote by λ+(S)

this first scale of appearance of S. The leaves, which have no descendants, are given

λ(S) = 0.

Now each point x ∈ E labels nested sets {Si(x)} in the hierarchy. The axiom of scale

increasingness shows that the class Si(x) is a candidate to participate in a minimal cut

π∗µ if its scale of appearance is λ+(Si(x)) ≤ µ and if the scale of appearance of each

Sj(x), j > i is ν+ > µ. Then Si(x) will effectively belong to the minimal cuts for all

scales [λ+,∧ν[ since in this interval it is not covered by a larger class Sj(x), j > i.

4There are two main types of scale spaces semi-groups used in scale space studies. First is the linear
semi-group, based on a vector space. Second is the semi-group of Matheron’s granulometries [72] which
uses an underlying lattice for analysis, and where the most active transformation imposes its law.
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Figure 1.19: An example of a scale function. For each λ the classes which are hold
are just above the dotted line. Note that the class on the right branch with value 1,
repeated twice correspond the same same class, and a cut having one or the other are

the same cuts.

1.8 Inf-modularity

In this intermediary section we describe a property of energies defined on the family of

partial partitions akin to sub-modularity for set based functions, which have the property

of diminishing returns. Inf-Modularity will be later useful in describing the constraint

functions. We will later continue with the resolution of the Lagrangian constrained

optimization problem resolution with energetic lattices in section 2.7.

Here we detail the property of the energies on any family of p.p., and does not necessary

imply those of braids or hierarchies. We saw the interest in defining scale increasing

families {ωλ}. Can we define a monotonicity property on a more general class of partial

partitions, akin to the discrete concavity sense of sub-modularity [12]?

Definition 1.30. An energy ω∂ : D(E)→ R+ is said inf-modular when for each p.p. π

of support S ∈ P(E) we have

ω∂({S}) ≤
∧
{ω∂(a), a v {S}}. (1.46)

The inf-modularity resembles the singularity axiom a lot (1.9), but at the same time

is different. Firstly, the inequality in equation (1.46) is not strict, and secondly it is

a monotonic property all supports S ∈ P(E), unlike singularity which just requires

distinct energies. Note that if we replace the infimum of (1.46) by a sum, the condition

becomes less severe, which is that of sub-additivity.

1.8.1 Inf-modularity and scale increasingness

For the Lagrange type energies given by equation (2.22), the two notions of scale increas-

ingness and of inf-modularity coincide, but the latter applies to ω∂ only. More precisely,

we can state:
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Proposition 1.31. The family {ωλ = ωϕ + λω∂ , λ ≥ 0} is scale increasing if and only

if ω∂ is inf-modular.

Proof. If ω∂ is inf-modular, and µ > λ, we have (µ − λ)ω∂({S}) ≤ (µ − λ)ω∂(π), If in

addition ωλ({S}) ≤ ωλ(π), then by summing the two inequalities, we obtain ωµ({S}) ≤
ωµ(π), and the scale increasingness is satisfied. Conversely, if the implication (1.42)

holds, then by taking the difference between ωϕ({S})+µω∂({S}) < ωϕ(π)+µω∂(π) and

ωϕ({S}) + λω∂({S}) < ωϕ(π) + λω∂(π), we find (µ − λ)ω∂({S}) ≤ (µ − λ)ω∂(π), i.e.

Rel.(1.46), which achieves the proof.

The “only if” part of Proposition 1.31 is specific to the ωϕ(π) + λω∂(pi), type energies.

In short, inf-modularity ⇔ Causality (or in our words, additive scale-increasingness),

while inf-modularity =⇒ scale-increasingness. For a family such as {ωλ = ωϕ ∨ λω∂}
for example, the inf-modularity of ω∂ implies the scale increasingness of the {ωλ}, but

the converse is false.

An example of inf-modularity: The example refers to the α− ω-hierarchy by Soille

et al. [107, 108]. They have indicated several variants, which all rest on a same idea. A

family of previous segmentations of a 2−D function f led to hierarchy H. One requires

the largest classes where function’s global contrast is bounded, i.e. at each node S we

have the energy ω(S) = sup{f(S)} − inf{f(S)}. The values of f(S) obviously increase

monotonically on the hierarchy. A node S is kept when ω(S) ≤ 20). The minimal cut

is then the union of the largest remaining nodes. see figure 1.17 where this supremum

composition over ω ≤ 20, is demonstrated. One stops, climbing the hierarchy locally

when the global contrast reaches the constraint 20.

1.8.2 Inf-modularity Vs Sub-additivity

The concept of inf-modularity we just introduced is to be comparable with that of sub-

additivity. Remember that an energy ω is sub-additive when, energies over parent class

is always smaller than or equal to additive composition of energies on classes of child

partial partition. This inequality when ω is not restricted to positive functions, gives

sub-modularity [12] which serves as substitute for the convexity when dealing with the

subsets of E. As inf-modularity is applied to the partial partitions of E, we firstly need

to introduce some energy ω′∂ on sets that corresponds to ω∂ , by putting

ω′∂(S) = ω∂({S}), S ∈ P(E), {S} ∈ D(E)
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with ω′∂(∅) = 0. Then we must match sets and partial partitions in some sense. To do

this, lets consider the comparison of a p.p. π with its classes Tj , 1 ≤ j ≤ p. If we take

ω∂(π) ≤
p∑
j=1

ω∂({Tj}) =

p∑
j=1

ω′∂(Tj), (1.47)

then the inf-modularity of ω∂ yields inequality

ω′∂(S) = ω∂({S}) ≤ ω∂(π) ≤
p∑
j=1

ω∂({Tj}) =

p∑
j=1

ω′∂(Tj),

with π ∈ Π(S,B), which is nothing but the sub-additivity of ω′∂ (i.e. the relation

ω′∂(A ∪B) + ω′∂(A ∩B) ≤ ω′∂(A) + ω′∂(B) with here A ∩B = ∅). Now we can state:

Proposition 1.32. Let ω′∂ : P(E)→ R+ be a sub-additive energy on the sets of E. Any

extension ω∂ of ω′∂ to the partial partitions of E which satisfies the inequality (1.47)

is inf-modular. Conversely, the restriction ω′∂ to sets of an inf-modular energy ω∂ is

sub-additive.

For example, in a partition of the plane R2 the perimeters ω′∂ of the classes generate

an inf-modular energy ω∂ on the partial partitions. We passed from partial partitions

to sets, and vice versa, by the relation (1.47) which restricts the set approach. This

formulation, defined over partial partitions (and no longer on sets) using inf-modularity,

frees ourselves from this limitation.
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1.9 Summary

Chapter contribution summary

I We introduced a new hierarchical structure, namely, the braid of partitions

(BOP), that is any general family of partitions whose, where the supremum

of any two partial partitions pairs are disjoint or nested. The corresponding

hierarchy is called the monitor hierarchy of the braid.

I We introduced the Energetic ordering on partial partitions, and the associated

Energetic Lattice, which helps define an infimum in the space of partitions.

I h-increasingness was used to formally generalize the dynamic program to a

very wide variety of linear and non-linear compositions of energies of partial

partitions. Furthermore dynamic program for the new BOP structure, remains

the same, while providing a larger search space.

I Unconstrained optimization over the space of partitions using the energetic

lattice was the main structure one studies in this chapter, which generalizes

various optimization criteria on HOP [2, 49, 100, 108], while being generally

applicable to linear and non-linear energies. Chapter 2 will discuss constrained

optimization using the energetic lattice.

I The scale-increasing family of energies provide a general multi-scale mono-

tonicity conditions, which generalize Guigue’s multi-scale conditions [49]. The

energies are defined on the larger family of partial partitions belonging to a

braid.

I The four axioms of singularity, h-increasingness, scale-increasingness, and inf-

modularity are conditions on energies only, and not on the image domain E.

This space E maybe topological space, vector space, discrete, or neither of

these. Therefore, the notions of convexity, connectivity, are not needed for

the main results of the chapter.

I The axioms introduced in this chapter serve the purposes of: Singularity →
existence of energetic lattices and thus uniqueness, h-increasingness → local-

global solution by dynamic programming, scale-increasingness → monotoni-

cally ordered optimal cuts, and finally inf-modularity is non-linear version of

sub-additivity property, which will be used to describe constraint functions in

constrained optimization problems.
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Chapter 2

Constrained optimization

This chapter provides two different contributions1, to the problem of constrained opti-

mization on hierarchies:

Chapter contribution summary

• Firstly in section 2.2, we quickly recap Lagrangian multiplier methods, and

the conditions of for optimality for the primal and dual Lagrangian. We

show that the constrained optimization problem on HOP in literature are

solved by applying Everett’s theorem. We discuss how one can improve the

lower bound of globally optimal solutions of λ-cuts by Guigues and Salembier-

Garrido [13, 47, 100], by perturbing the Lagrangian. Further we demonstrate

the use of a different h-increasing penalty function for the constrained opti-

mization problem.

• From section 1.8 onwards, we generalize the constrained optimization problem,

at two levels, first by introducing the energetic lattice, and second by enlarging

the feasible set by introducing the braids of partitions.

2.1 Review on Constrained optimization on Trees

As we have already remarked in the previous chapter, in this section 2.1 we study clas-

sification and regression trees(CART) by [21] as applied to the problem of constrained

optimization on a generalized hierarchy of partitions (and not just rectangular partitions)

[13, 42, 47, 100]. There has been a sequence of studies following CART in the domain of

information theory to solve constrained optimization problem of rate-distortion [26]. As

Gray et. al [26] explain, pattern recognition used distortion-rate bounds on classification

1Articles in prepartion
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trees while, information theory use them to solve variable-rate source coding problems.

Further, they explain that classification trees can be put into a data compression frame-

work by thinking of the unknown class as a clean probabilistic source corrupted by

observation noise and modifying the distortion measure accordingly. The use of tree

based models for source coding has been critical in demonstrating how one can achieve

rate constraints by alternating across multiple optimal subtrees, even though such a

constraint might not exist statically for given distortion level or bandwidth constraint

[95, 105].

The goal of this section is to study the Lagrangian optimization framework used in

the different papers, and clarify the importance of the optima. Further we will see

the connection with the Lagrangian dual and its importance as in the context of the

rate-distortion theoretic [95] framework and the Scale-set framework [47].

2.1.1 Rate Distortion Theory

To give a quick introduction to rate-distortion theory, we will aim at defining the

distortion-rate function, which is the distortion incurred for a given bandwidth or rate

constraint on the communication channel.

D(R) = inf
PY |X
{E[ρ(X,Y )]|I(X,Y ) ≤ R} (2.1)

where X and Y are random variables, where Y represents the coded signal and X the

input signal. Here ρ(X,Y ) gives error measure, and PY |X is the conditional probabil-

ity source distribution. Then for a given channel one can define the rate I(X,Y ) and

distortion E[ρ(X,Y )] which are achieved by some coding scheme (not necessarily tree

structured) [26]. The rate-distortion function is the solution to the constrained mini-

mization problem in equation 2.1. In a tree structured coding scheme, Gray et al. [26]

prunes a complete code tree T to achieve pruned subtrees S such that we have:

D̂(R) = min
S⊂T
{δ(S)|l(S) ≤ R} (2.2)

gives rate-distortion function for some pruned subtree of a given tree T .
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2.1.2 Image segmentation formulation using Rate Distortion

The rate-distortion function was reformulated in the context of image segmentation

where the constraint optimization problem now was defined on the hierarchy of parti-

tions. This was studied first by [100] and in more detail in the thesis [42] over a binary

partition tree structure. Further the thesis of Guigues [47] provides different conditions

additivity and separability on energies that can be minimized in the above constraint

optimization problem, the solution of which can be achieved by solving a dynamic pro-

gram. This study has later been extended to the minimization of the Mumford-Shah

energy on hierarchy of partitions generated from tree of shapes in [13]. We will review

the optimization problem in the new formulation to understand their components:

Caselles et al. [13] view the distortion measure as mean square error between the original

image and recovered image, D = E[(f(x) − g(x))2]. Here for a maximum allowed

distortion D∗ one can achieve a lower bound on the bit-rate given by R(D∗). Conversely

when bounding the rate we have achievable distortion given by D(R∗). This gives us

the following two constraint problems which are equivalent:

minR(D), subject to D ≤ D∗ (2.3)

and while minimizing the distortion

min
B∈Sb

D(B), subject to R(B) ≤ R(B∗(λ)) (2.4)

where the rate R(B) is measured in terms of the cost of encoding the curves, plus, the

cost of encoding gray level values of the regions.

Caselles et al. [13] following Shoham-Gersho [105] use the Everett’s theorem [39] to

obtain the optimal solution B∗(λ) by solving the unconstrained problem:

min
B∈Sb

(D(B) + λR(B)) (2.5)

Shoham-Gersho [105] clearly suggest that if one can calculate the global minimum to

unconstrained Lagrangian in equation 2.5 one has a solution for the constrained problem

in 2.4. We will discuss this further showing that this is called the Everett’s main theorem

[105], and is used to solve constrained optimization problems where the objective and

constraint functions are not necessarily continuous or derivable.
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Shoham-Gersho and Garrido [42, 105] suggest the use of successive approximation meth-

ods. Garrido repeats a bottom up scan analysis while searching the Lagrangian param-

eter values in a secant iterative search to approximate the rate function R. While they

achieve the desired rate with the smallest distortion possible, they in reality are achiev-

ing perturbed and thus approximate solution of the primal problem. In such cases the

optimum corresponding to optimal λ corresponds to one that achieves nearly exact rate.

For an understanding of the dual and primal problems and their relations in channel

capacity-distortion optimization problems, we refer the reader to Chiang-Boyd [25, 34].

One can note here that duality is not always present inherently and can be overrid-

den by achieving a mapping i.e by some simple mappings of signs, variables, constant

parameters, and mathematical operations.

2.1.3 Tree structured Vector Quantization(TSVQ)

The BFOS algorithm [21] has been used to optimally prune tree structured vector quan-

tizers(TSVQ). The reader is highly consulted to read the book on the subject by Gersho-

Gray [43]. This formulation is one of the important motivations for the rate-distortion

theoretical framework for constrained optimization and its application in image anal-

ysis, with a whole domain developing different ways to quantize signals using the tree

structure. The resulting sequence of pruned subtrees would lie on the convex hull of the

operational rate-distortion points.

In this section we remark that the tree functionals or energy being minimized are the

expected distortion and expected length of codeword. That is the energy to minimize is

given by [43]:

d̄ = E(d(X, X̂) + λlen(i(X̂)) = E(ρ(X, X̂)) (2.6)

where len() represents the length of the code word, d represents the distortion measure

defined on the random variables X and X̂.

The expected error has a quadratic form, which consequently is also a sub-additive

function. The crucial difference to be noted here is that the energy functionals are defined

on trees, pertain to a distribution of input signal/image values. The tree structure

encodes the signal up to a required constraint, but over a distribution of values, thus

allowing a tractable assumption of convexity the subsequent validity of application of

the Lagrangian multipliers method.

60



CHAPTER 2. CONSTRAINED OPTIMIZATION 61

The existence of a multiplier value for a given constraint function value, has been a

problem in the domain of continuous optimization. But in case of TSVQ’s applied using

wavelet bases one achieves the convex hull of the Rate-distortion Curve by time sharing

across two valid constraints to achieve the expected or average constraint value on the

R-D curve. In most cases the multiplier method assures only an upper bound.

The purpose of this section on rate-distortion theory was to remind the reader that

the constraint and objective functions are defined for distribution X, X̂. One needs to

be careful when one evaluates minimum using the multiplier method for a constraint

function such as perimeter or number of classes, since these is no probabilistic model,

and furthermore no assurance of achieving a constraint exactly.

2.2 Lagrangian Multipliers and Everett’s Theorem

The Lagrange multipliers are associated with an optimization problem which is referred

to as the Lagrangian dual2, or simply dual, problem. The role of the dual problem is

to define a largest lower bound on the primal value d∗ of the primal (original) problem.

The important property of the dual is that its concave.

2.2.1 Reminder on Lagrange Multipliers

In continuous constrained optimization, with the space of solutions are n-dimensional

points x ∈ Rn one poses the constrained minimization problem as:

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m.

hi(x) = 0, i = 1, . . . , p.

(2.7)

where, f0 is called the objective function, while fi, hi are constraint functions. The

Lagrangian multipliers method consists in obtaining the unconstrained minima of a

Lagrangian function. In the processing describing the minima of such a function, one

has to have the gradient of the objective function, and the gradient constraint functions,

scaled differently by a scalar multiplier. Following [20] Lagrangian is classically written

as:

2The dual problem was discovered during the 1920s by John Von Neumann in matrix games, but had
for a long time implicitly been used also for nonlinear optimization problems before it was properly stated
and studied by Arrow, Hurwicz, Uzawa, Everett [39], Falk, Rockafellar, others, starting in earnest in the
1950s. The original problem referred to as the primal problem, was a name given by George Dantzig’s
father, a Greek scholar. [80]
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L(x,λ,ν) = f0(x) +

m∑
i=1

λifi(x) + νihi(x)

The solution of the the problem in equation (2.7) requires derivatives

∇f0(x) +
m∑
i=1

λi∇fi(x) +
m∑
i=p

νi∇hi(x) = 0 (2.8)

We obtain the classical Lagrangian case when we have purely equality constraints, giving

us ∇f0(x)+
∑m

i=p νi∇hi(x) = 0. This is important to remark in the case of the scale-sets

framework, since there can exist a constraint for which one cannot find a multiplier, but

one can only find a lower bound.

In our expression for the energy we will use ωϕ+λω∂ +νωε to represent the Lagrangian,

with λ the Lagrange multiplier, where ωϕ is objective function, to be minimized, and

ω∂ and ωε are constraint functions.

2.2.2 The Relaxation Theorem

Given a constraint optimization problem of the form

f∗ := inf
x
f(x), subject to x ∈ S, (2.9)

where f : Rn → R and S ⊆ Rn. One defines relaxation by the following:

f∗R := inf
x
fR(x), subject to x ∈ SR, (2.10)

where fR : Rn → R such that fR(x) ≤ f(x), ∀x ∈ S, and SR ⊇ S. For problem pair in

equations (2.9, 2.10) we state the relaxation theorem [80] as:

Theorem 2.1. (Relaxation Theorem)

(i) Relaxation: fR(x) ≤ f(x)

(ii) In-feasibility: If the relaxed problem is infeasible so is the original problem.

(iii) Optimal relaxation: If 2.10 has an optimal solution x∗R, then

x∗
R ∈ S, and fR(x∗

R) = f(x∗
R), (2.11)

then x∗
R is an optimal solution to original problem in equation (2.9).
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Definition 2.2. We call a vector λ∗ ∈ Rm a Lagrange multiplier if it is non-negative

and if f∗ = infx∈X L(x,λ∗), for a given Lagrangian function L(x,λ).

We can thus state the conditions on the existence of Lagrange multipliers from [80]:

(i) If there is no duality gap, then the set of Lagrange multipliers equals the set of

optimal dual solutions (which however may be empty).

(ii) If there is a duality gap, then there are no Lagrange multipliers.

The relaxation theorem is stated here to understand the Everett’s theorem. Lagrangian

relaxation is employed in optimization problems to find approximate solutions, by de-

composing the constraints to produce “easier” subproblems.

2.2.2.1 Everett’s Main, λ and ε Theorems

Everett’s seminal paper studies resource allocation problem as evident from its use by

Shoham-Gersho [105] to study variable rate set quantizers. For the proofs of the λ, ε

theorems refer the reader to the original paper by Everett [39].

Theorem 2.3. (Everett’s Main Theorem) Given the multiplier vector λ ∈ Rm × Rp,
and the lagrangian function,

min
x∈X
{f(x) + µT g(x) + λTh(x)}

The solution x̄(λ) to this unconstrained minimization problem, is also an optimal solu-

tion to perturbed primal problem given by

minimize
x∈X

f(x)

subject to gi(x) ≤ gi(x̄(λ)); i = 1, . . . ,m.

hj(x) = hj(x̄(λ)); j = 1, . . . , p.

The Everett’s main theorem states the following: for any non-negative λ if an uncon-

strained minimum of the Lagrangian function can be found, with solution x̄(λ), then this

solution is also the solution to the constrained problem whose constraints are, in fact,

the amount of each resource expended in achieving the unconstrained solution. This
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implies that the constraints are set by choosing the λ vector. Any arbitrary set of non-

negative λ’s works here, notably causing the original constraint optimization problem

to be unknown, and is only to be defined once the Lagrangian’s solutions is determined.

Its important to recall here that there are no conditions of continuity nor derivability

on the objective and constraint functions, other than being real-valued.

Theorem 2.4. (λ-Theorem) Given λk1, λ
k
2 be two multiplier values that produce solution

x∗1, x
∗
2, respectively, and only one of the constraint values are not met, i.e. gk(x

∗
1) =

gk(x
∗
2), k 6= j and that gj(x

∗
1) > gj(x

∗
2), then,

λj2 ≥
f(x∗1)− f(x∗2)

gi(x∗1)− gi(x∗2)
≥ λj1 (2.12)

This theorem states that, given that we have two optimal solutions produced by two

Lagrange multipliers corresponding to two different constraint functions, for which only

one of the constraints are met, the ratio of the change in optimal objective value to that

of the optimal constraint is bounded between the two multiplier values that correspond

to the value change. In the case where the objective function values are derivable

w.r.t those of the constraints, the partial derivative w.r.t single constraints, gives the

corresponding multiplier λi.

λi =

[
df(x∗)

dgj(x∗)

]
gkconstant

The λ-theorem is useful in multiple constraint case, to demonstrate that the multiplier

values corresponding to a particular constraint, produce changes in the constraint, where

the multiplier measures how far one goes from the objective’s optimal value. When

applying Lagrangian multiplier methods it is of interest to know the distance from the

approximate upper bound to the global minimum, and its variation with the constraint

function. This helps in identifying if one is lower bound whose resource-payoff variation is

not drastically varying. This following theorem is for case where one can only guarantee

an objective value which is ε away from the true optimum possible.

Theorem 2.5. (ε-Theorem)

1. x̄ comes within ε of maximizing the Lagrangian, i.e. for all feasible points,

f(x̄)−
∑

λkgi(x̄) > f(x̄)−
∑

λkgi(x̄)− ε

2. x̄ is a solution of the constrained problem with constraint function value gi(x̄) that

itself being within ε of the maximum for those constraints.
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2.2.3 Lagrangian Dual and KKT conditions

We state the KKT conditions to view both the primal and dual problems on the HOP

and helps discuss, the feasibility in both domains. The Karush-Kuhn-Tucker(KKT)

conditions generalizes the method of Lagrange multipliers to the situation where one

has inequalities. We review shortly here, following the [20], the primal problem and its

Lagrangian from equation (2.8), without the equality conditions, since we are in such a

case:

Problem 1. Lagrange Primal problem:

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m.
(2.13)

The Lagrangian for the primal problem is given by

L(x, λi) = f0(x) +

p∑
1

λifi(x).

The unconstrained minimization of the Lagrangian L replaces the initial constrained

minimization of f0. The λi are the Lagrange multipliers. Interpreted as the coordinates

of a vector λ in Rp, they yield the dual Lagrange function g(λ) by the relation:

g(λ) = inf

{
f0(x) +

p∑
1

λifi(x),x ∈ dom-f0

}
(2.14)

Problem 2. Lagrange dual problem: find multiplier λ � 0 3 which maximizes inf-

Lagrangian function:

maximize g(λ)

subject to λ � 0
(2.15)

The solution to the dual problem in 2.15 for a feasible dual parameter, is only a lower

bound to the solution to the primal in general, and are only equal in case of strong

duality. This is written as:

g(λ) ≤ f0(x∗). (2.16)

which is termed as the lower bound property.

3� here refers to the positive semi-definiteness of matrix λ.
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In the domains dom-f0 and dom-g, of possible solutions in f0 and g respectively, we

always have weak duality when,

g(λ∗) ≤ f0(x∗). (2.17)

We have strong duality when there is no gap, that is the primal’s optimum value equals

the dual’s optimum value,

sup
λ
g(λ) = inf

x
f0(x), (2.18)

which corresponds to local extrema of both x∗ and λ∗. To summarize, for any opti-

mization problem with differentiable objective and constraint functions for which strong

duality obtains, any pair of primal and dual optimal points must satisfy the KKT con-

ditions4 [20].

Theorem 2.6. (KKT conditions) Let f0 and {fi, 1 ≤ i ≤ p} be p + 1 continuously

differentiable functions: Rn → R, and let

(i) fi(x) ≤ 0 1 ≤ i ≤ p (primal feasibility)

(ii) λi ≥ 0, 1 ≤ i ≤ p (dual feasibility),

(iii) λifi(x) = 0, 1 ≤ i ≤ p (complementary slackness),

(iv) ∇f0(x) +
∑p

1 λi∇fi(x) = 0, (minima condition),

be the four so called KKT conditions. If f0 and {fi, 1 ≤ i ≤ p} are convex, and x∗ and

λ∗ satisfy the four KKT conditions, then they are optimal. Conversely, if strong duality

holds, and if x∗ and λ∗ are optimal, then they satisfy the four KKT conditions .

The first two conditions are the constraints set by the two problems 2.13 and 2.15. The

third condition of complementary slackness is obtained when we assume Strong duality.

The condition of complementary slackness basically requires that, at the optimal so-

lution, every constraint that is does not apply, have a zero valued multiplier. This is

because, if this constraint does not bind, then we could just as well have solved the

problem without that constraint, and setting the corresponding multiplier equal to 0

effectively deletes the constraint from the Lagrangian.

4The KKT theory is more general. It may involve additional constraints hj = 0 (as in Lagrange’ initial
work) and extends to the pseudo-convex case (a function f on Rn is pseudo-convex if ∇f(x).(y−x) ≥ 0
implies f(y) ≥ (f(x)); a convex function is pseudo-convex). Besides, the continuous derivability can
be replaced by a weaker Lipschitz condition. Moreover, this is very wide field of convex analysis. The
demonstrations chosen here highlight the comparison with the braid framework required for the next
section.
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Breiman et al [21] [1984]
Classification & Regression Trees

Gray et al [26] [1989]
Tree structured VQ

Ramchandran-Vetterelli [95] [1993]
Wavelet Packet tree pruning

Everett [39] [1963]
Everett’s theorem

Shoham-Gersho [105] [1988]
Variable-rate set quantizers

Salembier-Garrido [100] [1988]
Pruning Binary Partition Trees

Guigues [47] [2003]
Scale-Sets or λ-cuts

Caselles et al. [13] [2006]
Level Lines Selection

Figure 2.1: Blue: Breiman Chain, Green: Everett Chain, Pink: Salembier Chain

In a result similar to Theorem 2.6 for constrained minimization on braids, we present

conditions in the following section.

2.2.4 Reviewing constrained optimization on hierarchies

The block diagram 2.1 demonstrates the two chains of ideas, converging on a third one.

• Firstly in blue: Breiman’s dynamic program to prune classification and regres-

sion trees(CART), CART’s usage in information theory starting with Grey et

al. for source coding, further on CART’s DP applied to wavelet tree pruning by

Ramchandran-Vetterelli, finally ending in Salembier-Garrido for pruning Binary

partition trees.

• Second chain develops the lagrange multiplier based constraint, starting with Ev-

erett’s theorem, its use by Shoham-Gersho in calculating a optimal source coding

schemes, leading to Salembier et al.

• The third chain consists of Salembier-Garrido try to solve the rate-distortion mini-

mization problem on binary partition trees by approximating the constraint rate by

searching for an near optimal multiplier, while Guigues established the scale-sets

image descriptor for a given HOP and parameterized energy ω(π, ω). Caselles et

al develops Salembier-Garridos model for level line selection in the tree of shapes.
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Multiplier’s Role: In the Breiman chain one uses scale-increasingness w.r.t the mul-

tiplier to have a monotonic pruning of HOP, or increasing λ-cuts, while in the Everett

chain one is trying to approximate the constraint by choosing a “good” multiplier.

2.3 Guigue’s λ-cuts are upper bounds

We demonstrate how the λ-cuts calculated by Guigues et al. in [47] are upper bounds

the optimal objective function value, achievable in constrained optimization problem on

the HOP. One quick intuition to begin with is what happens when we vary the constraint

function instead of the Lagrangian multiplier λ ?

We will see with a simple counter-example, how the λ-cuts do not correspond to the

global minimum under the conditions for sub-additive constraint and super-additive

objective, for a particular cost or constraint function value.

2.3.1 Counter-example

The following counter-example considers the Guigues framework of sub-additive and

separable energies. A dendrogram is depicted in Figure 2.2. The two trees shown ωϕ-

tree and the ω∂-tree represent the energies (ωϕ(S), ω∂(S)), associated with each node S

in the tree. The dendrogram with node is shown separately, at bottom left of the figure.

To recall, by separability condition ωϕ (and resp. ω∂) of a partial partition is the

sum of the ωϕ (resp. ω∂) of its classes, and when parent and child have the same

energy, one chooses the parent. Guigues considers ωϕ to be super-additive, i.e ωϕ(S) ≤∑
a∈π(S) ωϕ(a), while the constraint function ω∂ to be sub-additive, i.e. ω∂(S) ≥∑
a∈π(S) ω∂(a).

Figure 2.2 (bottom right) indicates the lambda function, which gives the value λ for

which the energy ω(λ)(S) = ωϕ(S) + λω∂(S) of the class S equals the energy of the

partial partition of the children of S. The minimal cuts of H w.r.t. ω(λ) are thus the

level sets of the lambda function. The three minimal cuts π∗(λ), for λ = 1, 2, 3 are

shown and denoted by π1, π2, π3 for quick reading.

As ω(λ) is scale-increasing, the minimal cuts π∗(λ) span bottom-up the hierarchy H.

But this does not mean that they meet all classes of H. A class S is met iff it belongs

to an ascending path in the λ-tree. This is not the case, for example, for class j show in

Figure 2.2. Following Guigues, we say that these classes are anti-causal. They do not

disturb the computation of the λ-cuts or π∗(λ).
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Figure 2.2: Bottom Left, a hierarchy H with classes. the pairs of trees in the top
row, indicate the two energies (ωϕ, ω∂) associated with the corresponding classes. π
and π′ are two cuts of H. Bottom right, in the nodes, we depict the lambda values by
equating parent and child energies, whose level sets give the minimal cuts w.r.t. the
ωλ. They are depicted in the λ-tree for λ = 2, 3, 4 as π2, π3, π4. The λ values for the
leaves are assumed to be 0, though in case of Breiman et al. [21] λ for the leaf classes

are set to ∞ to avoid over-fitting.

Though the parameter λ ∈ R varies continuously, both ωϕ and ω∂ are piecewise constant

functions of λ. This is due to the finite nature the hierarchy. One observes that ωϕ

increases with λ, while ω∂ decreases with it.

Let us consider now consider constrain function value, say C = 7.5 and the minimal cut

it may correspond to. In the range of the values around 7.5, the only change which may

occur in the minimal cut π∗(λ) is the replacement of (a, b, c, d) by (g, h, i) as λ increases.

More precisely,

ω(λ)(g, h) ≤ ω(λ)(a, b, c, d) ⇔ 10 + 4λ ≤ 4 + 6λ

i.e. λ ≥ 3. For λ = 3 the minimal cut is (g, h, i) by singularity, thus:

ω(λ)(a, b, c, d, i) = 8 + 8λ ⇒ (a, b, c, d, i) = π∗(λ) for 2 ≤ λ < 3

ω(λ)(g, h, i) = 14 + 6λ ⇒ (g, h, i) = π∗(λ) for 3 ≤ λ < 6

For the smallest λ such that ω∂(π∗(λ)) ≤ 7.5, namely λ = 3, the corresponding ωϕ value

is 14. Compare that with the non optimal cut π = (g, c, d, i) of energy ω(λ) = 11 + 7λ

(Figure 2.2 top left). Cut π obviously provides a better result than the minimal cut
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λ

ω∂ , ωϕ

0 1 2 3 4 5

6

8

9

14

C = 7.5

ωϕ(π∗λ)

ω∂(π∗λ)

Figure 2.3: For 2 < λ < 3 the minimal cut is (a, b, c, d, i) and ω∂ = 8, for λ ≥ 3 the
minimal cut is (g, h, i) and ω∂ = 6, i.e. ω∂ is never equal to the cost C = 7.5 at any

time.

(g, h, k) since ω∂(π) = 7 (hence below the cost C = 7.5), for an energy ωϕ(π) = 11.5

(hence smaller than ωϕ(π∗(3)) = 15).

What’s worse is that the two different non-λ cuts, π = (g, c, d, i) and π′ = (a, b, h, i) have

the same ω∂ = 7 and ωϕ = 11.5. Thus there are many such constrained minimal cuts

for the energy ωϕ, and none of them have a corresponding value of λ that achieves the

constraint. And we cannot take their infimum (a, b, c, d, i) because its ω∂ energy equals

8, above the cost 7.5.

What happened is as we will see further, is that we do not have a feasible λ for the dual

problem. We have λ∗ = inf{λ | ω∂(π∗(λ)) ≤ 7.5} = 3, but ω∂(π∗3) = 6 and not 7.5. The

is more formally seen in the energetic lattice formulation in Theorem 2.11 cannot give

constrained minimal cuts.

2.3.2 Lessons from the Counter-Example

We discuss a few important implications of the counter example:

• Lack of Cost→Multiplier mapping: For a given cost ω∂ ≤ C one is not assured a

corresponding multipler λ, the collection {π∗(λ), λ ∈ R} is not informative enough.

A cut that minimizes ωϕ can perfectly not belong to the {π∗(λ)}.

• The dual problem is still a combinatorial problem.

• Uniqueness is lost, even when ωϕ is strictly h-increasing.
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• π∗(λ∗) is only the upper-bound of the constrained minimal cuts.

• The values of λ are discrete due to the discrete nature of the cuts of the hierarchy,

furthermore these values of λ, can be integral or rational, while still lacking a

C → λ map.

• One can always reach any one of these minimal cuts (as there may be many).

It suffices to begin from any arbitrary class of π∗(λ∗) and to replace it by its

descendants until we reach ω∂ > C. If one still has ω∂(π) ≤ C when one arrives

to the leaves, one repeats the descent from another class of π∗(λ∗). This helps

improve the upper-bound on the λ-cuts, for singular h-increasing functions.

• The error | ω∂(π∗(λ∗)) − C | gives no information about the error | ωϕ(π∗(λ∗)) −
ωϕ(π) | where π is a constrained minimal cut.

• One important structure of the constraint problem we see is, for a given cost on the

ω∂-tree the structure of the solution space forms a lattice. The choice of the partial

partition structure, and the energetic lattice to solve the constraint problem, can

be seen more clearly in a simple example. The constrained optimization problem

will be formulated in a more general framework of the energetic lattice in section

2.7.

• Finally, the counter-example suggests a way to advocate costs independent of λ.

For example it is sufficient to allocate a ω∂ to each class and not, globally, to the

cuts, which is demonstrated in section 2.10 on class based constraints. This is no

more Lagrangian, and depends on a class based constraint.

2.4 Improving the upper-bound λ-cuts

Let us consider again the constrained optimization problem presented earlier in equation

1.14:

minimize
π∈Π(E,H)

∑
S∈π

ωϕ(S)

subject to
∑
S∈π

ω∂(S) ≤ C

Guigues and Salembier-Garrido’s optimization perspective consisted in achieving a λ

value that provides a cut with minimal objective and at the same time approaches an

given constraint function value over the cut is ω∂(π) ≤ C. This basically due to Everett’s

theorem 2.3. In this section we discuss two approaches which try to improve the upper

bounding λ-cuts by perturbing the original problem, so as to achieve a better cut.
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2.4.1 Perturbing the Scale Function

Guigues’s λ-cuts have addressed the problems of monotonicity and constraint satisfaction

in just one sense: multiplier-constraint. The constraint function values, correspond to

the result of a solution to a perturbed problem where the constraint value is set by the

choice of the multiplier. Here we will now perturb the values of the constraint function(or

equivalently the objective) so as to achieve a better solution.

Given that we have any general cost ω∂(π∗(λi)) < C < ω∂(π∗(λj)) bounded by between

any two causal λ-cuts, λi, λj , more generally between the level sets of the scale function

Λ.

Let us consider now the perturbed scale function Λ(S) for each parent class S in the

hierarchy or Braid:

Λ(S, ε) =
ωϕ(S)−

∑
a∈π(S) ωϕ(a)∑

a∈π(S) ω∂(a) + ε− ω∂(S)
=

∆ωϕ
∆ω∂ + ε

(2.19)

The perturbation ε corresponds to a small slack variable that is added to the perimeter

function ω∂ . One should note here that the perimeter constraint function has a higher

range of values possible compared to the number of classes as constraint, i.e. 1, ...N , N

being the number of leaves. The perturbed scale function Λε(S) in such a case improves

the constraint value → Multiplier mapping (C → λ), by finding cuts that are between a

feasible upper-bounding λ-cut and a limiting infeasible λ-cut. The algorithm and results

will presented in detail in the applications chapter 3.

Figure 2.4: Demonstrating the feasible space in the hierarchy with the family of C-
cuts which are the set of partitions that satisfy a constraint of ω∂(π) ≤ C, which here

for demonstration are cuts with number of classes no greater than 6.

Given λ-cuts we may have nodes for example g, h in figure 2.2 with the same value of

λ which are parents of nodes with same λ, here we have set them to be 1 for nodes

a, b, c, d. In such a circumstance we have a way to reach a partial partition and thus a

cut with a constraint function value closer to C, resulting in a cut which is not a λ-cut.

The basic idea is borrowed from Penalty methods associated with Augmented La-

grangian methods [20]. These methods have two multipliers, one that penalizes deviation
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from a constraint and the other the regular Lagrangian multiplier. The advantage of

these methods are a low span of search values for the penalty multiplier, since the La-

grange multipliers bound the optimal solution. Now we present two approaches for the

problem of obtaining a better λ-cut.

λ-Perturbation: For partial partition in the λ-cut, we perturb the values of one of

the partial partitions by a very small value λ′ = λ + ∆λ. The effect is that we

have no introduced a new family of λ′-cuts that reaches cost values between the ini-

tial ω∂(π∗(λi)), ω∂(π∗(λj)). For example in figure 2.2 between π2, π3 we have π or π′ as

a result of moving the λ values of either g or h by ∆λ.

2.4.2 Penalty Methods

Lets consider the cost C = 5, which corresponds to a cut (j, i) which in the scale-set

framework is avoided, since this produces does not result in monotonically ordered cuts,

and Guigues removes them by scale-climbing, which uses a similar dynamic program

but on the scale function. Classes with non-monotonically ordered scale function values

are termed by Guigues as Anti-causal Classes. Though this problem purely depends on

the relation between the objective and constraint function. One can now resolve this

ordering problem by changing the constraint function to a penalty function, such that:

ω(π(S), λ) =
∑

a∈π(S)

(ωϕ(a))α + λ
∑

a∈π(S)

ω∂(a) (2.20)

where α is a global parameter for all classes. For the toy example in figure 2.2 it produces

the following λ’s for a range of values of α, which are calculated by the scale function

equation:

Λ(S, α) =
ωϕ(S)− (

∑
a∈π(S) ωϕ(a)α)

1
α∑

a∈π(S) ω∂(a)− ω∂(S)
(2.21)

λ-values for classes (E, j, g/h, i) Causality

α = 1 6, 10, 3, 2 (linear, Lagrangian case), anti-causal

α = 1.5 66, 67, 9, 6, (floored), anti-causal

α = 1.525 74, 73, 9, 6, (floored), causal

α = 2 484, 350, 23, 14, causal

A point on the refinement of λ-cuts is the parameter α in equation (2.20). As already seen

in the study of composition of h-increasing energies in section 1.6. This α parameterized
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penalty energy is h-increasing as already shown in proposition 1.19, to enable one to

control the choice of parent/children more finely, than just by supremum, infimum, sum

or number of classes.

Increasing Scale-Function range: In overview from the two methods above we can

conclude that the greater the range of values of perturbed λ, the higher the chance of

converging at a better optimal cut meeting constraining ω∂(π) ≤ C. The λ-perturbation

and the penalty function are ways of inspecting λ-cuts that are finer. While one can

note here that the penalty function method provides cuts that are in between the ones

address by scale-openings and closings in subsection 1.7.3.

2.5 The energies ωλ = ωϕ + λω∂

Here we present the critical result of constraint minimization over braids by their char-

acteristic energetic lattices. The first chapter dealt with unconstrained minimization of

any model of energy on partial partitions. We now will focus on the Lagrangian energy

ωλ = ωϕ + λω∂ , whose unconstrained minimization leads to the solution of the original

constrained minimization.

Lagrange Multipliers for constrained optimization on HOP: When dealing with

the cuts Π(E,B) of a braid B, can we find a cut which minimizes ωϕ on Π(E,B) under

some energy constraint ω∂?

Since Lagrange’s starting points seems unrealistic, let’s consider his arrival point, which

is the Lagrangian like in equation (2.8). For convenience, we begin with a single con-

straint. We have the Lagrangian ωλ,

ωλ(π) = ωϕ(π) + λω∂(π) π ∈ Π(E,B). (2.22)

The formalism (2.22) is classical in image segmentation, as well as the Lagrangian in

[100], [49], when the braid reduces to a hierarchy, and when the energies ωϕ and ω∂ are

linear, i.e. when the energy of a p.p. is the sum of the energies of its classes. These

results strongly rest on this linearity assumption, which is in fact a particular case, one

can find in the literature various energies which involve other operations, like suprema

or infima, in the α−ω-trees [107], as well as a refinement based ordering in [2]. We will

now present a more comprehensive approach, which works across these cases.
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2.6 Discussion on Everett’s theorem

2.6.1 Gap’s and lower bounds

The Lagrangian relaxation used by Everett generates a mapping from the multiplier

vectors λ into the space of constraint vectors. There is an a priori guarantee that this

mapping is onto for a given problem, and one may have inaccessible “gaps” consisting

of constraint vectors, for whom λ vectors don’t exist always (examples can be easily

constructed). Optimum in such cases are not guaranteed by the Lagrangian relaxation

method and we would need other means to achieve them. The basic cause of the gap’s

are the non-concavity in the objective function w.r.t the constraints, i.e convexities in

the envelope of the set of achievable objective points in the space of feasible set. [39]

The method by itself does not guarantee solutions for a general constraint problem, but

ensures a lower bound. It is interesting to note that with the λ-mapping we ensure to

find a cut that is at least ε far from the optimal cut.

Another important point to note is that the existence of a global minima for a given

function on a general set X using the Weierstrass theorem 5, which provides the existence

of a minimum by necessitating a continuity of the said function [17].

Discontinuous objective and Constraints: For function’s defined on partial par-

titions, such as ω∂ and ωϕ, the continuity is mostly never true or even defined, these

functions are akin to abstract set value functions.

Lagrangian and KKT multiplier methods depend on the ability to describe the local

nature of a minima (or extrema), such as the first order or second order conditions,

leading to strict definitions of convexity. In case of non-convex functions with global

minima ensure, we find the work that uses the “convexified” epigraph of such functions

to obtain the said global minima. In the set valued case the possibility of achieving

saddle points are also studied in literature, but we restrict ourselves here to the case of

partitions.

Retrospective on Optimization by Pruning: In this section we briefly remark in

the table 2.1 the development of the pruning based optimization on trees starting with

Breiman et al. [21] while comparing with the energetic lattices. We also study the

different characteristics of monotonicity, uniqueness, and the fact that if there has been

a Lagrangian interpretation used.

5Weierstrass Theorem states that if K ⊂ Rn is compact and f : K → R is a continuous function, then
f has a maximum and a minimum on K, i.e. there exists k′, k∗ such that f(k′) ≥ f(k) ≥ f(k∗), ∀k ∈ K
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2.7 Minimal λ-cuts and energetic lattices

We develop in this section an energetic-lattice based approach to constrained optimiza-

tion. Three different models of constraints are proposed, firstly numerical constraint on

constraint function on partitions, secondly partition based constraint, and finally a class

based constraint. The last two reinforce the model of constrained optimization where

the energetic lattice is an optimal framework. From now on, ω(λ, π) = ωϕ(π) + λω∂(π)

is used to denote scalar Lagrangian energy, and ω(λ) its vectorial version (2.22). The

Lagrangian energy of cut π is thus

ω(π, λ) = ωϕ(π) + λω∂(π)

A number of lattices are involved in the formalism, we delineate between them, while

keeping our notation minimal. The first trivial lattice is of course R, which serves in

comparing energies. Moreover the same set Π of all cuts of B, is the matter of the four

different partitions lattices:

• Π of the refinement ordering, with the leaves as minimal cut and E as maximal

one (the symbol E of the previous notation Π(E) is dropped for the convenience);

• Π(ω(λ)) of the energetic ordering �ω(λ) w.r.t the Lagrangian ω(λ), of order �ω(λ).

The minimal cut for this energetic lattice is π∗(λ) = fω(λ){π, π ∈ Π}. The value

of ω(λ) for a cut π ∈ Π is denoted by ω(π, λ), and that for the minimal cut by

ω(π∗(λ));

• Π(ωϕ) (resp. Π(ω∂)) of the energetic ordering w.r.t. ωϕ, of order �ϕ (resp. the

energetic ordering w.r.t. ω∂ , of order �∂). If necessary, one makes the notation

more precise, and indicates the hierarchy or the braid under study (e.g. Π(ωϕ, B);

In the vector case, the vector λ = {λi, 1 ≤ i ≤ p} replaces λ in the notation, i.e. Π(ω(λ))

→ Π(ω(λ)), π∗(λ)→ π∗(λ), ω(π, λ)→ ω(π,λ), and the set of constraint ω∂i, 1 ≤ i ≤ p

replaces the constraint ω∂ . Note that the π∗(λ) are the only minimal cuts used below

(the minimal cuts in the lattices Π(ωϕ) and Π(ω∂) play no role).

Definition 2.7. One calls “scalar Lagrange family” of energies any family {ω(λ) =

ωϕ + λω∂ , λ ∈ R} where ω(λ), ωϕ, and ω∂ are singular, and where ω∂ is inf-modular.

Similarly a “vector Lagrange family” of energies is a family {ω(λ) = ωϕ +
∑
λiω∂i}

where the λi are scalar, and where ω(λ) ωϕ, and ω∂i are singular, and the ω∂i are

inf-modular.
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Given a braid B, we already know that a scalar Lagrange family provides a unique

minimal cut π∗(λ) of B with each λ, since ω(λ) is singular. Moreover the inf-modularity

of ω∂ shows that the lower upper bound of these minimal cuts π∗(λ) enlarge as λ increases

(Proposition 1.31 and Theorem 1.23). These first results are improved by the following

proposition:

Proposition 2.8. Let {ω(λ) = ωϕ+λω∂}, be a scalar Lagrange family of energies on the

partial partitions of a space E, and suppose λ > 0. Given a braid B on E, let Π(ω(λ)),

Π(ωϕ) and Π(ω∂) be the energetic lattices of the cuts π of B w.r.t. the energies ω(λ),

ωϕ, and ω∂ respectively. The minimal element of Π(ω(λ)) is denoted by π∗(λ). For all

λ, µ ≥ 0 the two implications

0 ≤ λ ≤ µ ⇒ π∗(λ) �ω∂ π
∗(µ) and π∗(λ) �ωϕ π∗(µ) (2.23)

are true, i.e. as λ increases, the sequence {π∗(λ), λ > 0} of the minimal cuts w.r.t. the

Π(ω(λ)) decreases in the energetic lattice Π(ω∂) and increases in the energetic lattice

Π(ωϕ).

Proof. If λ = µ, the relation 2.23 is obviously true. Suppose λ < µ. Consider the

class Sµ of the minimal cut π∗(µ) at point x and the associated l.u.b. Smax(x | µ).

The restriction π∗(µ) uSmax(x | µ) of π∗(µ) to Smax(x | µ) is the p.p. aµ. As ω∂ is

inf-modular, the energy ω(λ) is scale increasing. Then, according to Proposition 1.8,

Smin(x | µ) is the support of a p.p. aλ of π∗(λ). As π∗(µ) is the minimal cut for the

energetic ordering �ωµ , we have ωµ(aλ) ≥ ωµ(aµ), i.e.

ωϕ(aλ) + µω∂(aλ) ≥ ωϕ(aµ) + µω∂(aµ). (2.24)

On the other hand, as π∗(λ) is minimal cut for the energetic ordering �ω(λ), we have

also ω(λ, aµ) ≥ ω(λ, aλ), i.e.

ωϕ(aµ) + λω∂(aµ) ≥ ωϕ(aλ) + λω∂(aλ) (2.25)

By adding the two inequalities (2.24) and (2.25) we obtain, as λ, µ > 0

ω∂(aλ) ≥ ω∂(aµ). (2.26)

The inequality (2.26) is true for all supports Smax(x | µ), x ∈ E, which results in

π∗(λ) �∂ π∗(µ). Similarly, by subtracting the inequality (2.24) from (2.25) we obtain

2[ωϕ(aµ)− ωϕ(aλ)] ≥ (λ+ µ)[ω∂(aλ)− ω∂(aµ)] ≥ 0,
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which leads to π∗(λ) �ωϕ π∗(µ), and achieves the proof.

Corollary 2.9. If in addition ω∂ and ωϕ are h-increasing, then

λ ≤ µ⇒ ω∂(π∗(λ)) ≥ ω∂(π∗(µ)), and ωϕ(π∗(λ)) ≤ ωϕ(π∗(µ)). (2.27)

The h-increasingness allows us to apply relation (1.25) to both implications (2.23). Then

the two energies ω∂ and ωϕ vary in opposite senses over the minimal cuts. The important

corollary 2.9 generalizes the λ-cuts by Salembier-Garrido and Guigues [47, 100]: Firstly

to braids from hierarchies, and secondly from linear Lagrange families of energies ωϕ and

ω∂ to various non-linear compositions. Note that ω∂ does not need to be h-increasing

for obtaining λ ≤ µ⇒ ωϕ(π∗(λ)) ≤ ωϕ(π∗(µ)), and vice versa.

Corollary 2.10. The proposition 2.8 extends to vector Lagrange families, and the im-

plication (2.23) still holds when the vector inequality λ ≤ µ replaces the scalar one in

(2.23).

Proof. The proof is similar to that of Corollary 1.26. The vector variation from λ to

µ can be decomposed into a succession of scalar variations of each coordinate. As the

proposition 2.8 applies for each of these scalar steps, we finally get

0 < λ ≤ µ ⇒ π∗(λ) �ω∂ π
∗(µ) and π∗(λ) �ωϕ π∗(µ).

i.e. the vector version of Rel.(2.23).

2.8 Lagrangian Minimization by Energy (LME)

This first type of minimization focuses on the energies and performs unconstrained

minimization of the Lagrangian to obtain a relaxation of the constraint optimization

problem. However, as the set Π of partitions replaces the Euclidean space Rn, the

notions of continuity, derivability, gradient, and convexity vanish and we work on in the

space of lattices. For the sake of pedagogy, we view the case of one constraint first.

The primal and dual problems are re-stated over the cuts of B, and within an energetic

lattice:

LME Primal problem:

minimize
π∈Π(E,B)

ωϕ(π)

subject to ω∂(π) ≤ C,
(2.28)

Now the domain of the feasible cuts is the subset Π′ of Π
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Π′ = {π, π ∈ Π, ω∂(π) ≤ C} (2.29)

In the Lagrangian energetic lattice Πω(λ) corresponding to Lagrangian ω(λ) = ωϕ+λω∂ ,

the minimal cut π∗(λ) has an energy ω(π∗(λ)) which is itself minimal (h-increasingness

of ω(λ)). The energy ω(π∗(λ)) turns out to be the dual Lagrangian, g(λ). The energy

ω(π∗(λ)) is a function of λ, ωϕ and ω∂ , but not of the cuts π ∈ Π(E,B). The dual

problem can now be stated:

LME Dual problem: Given a braid B find the parameter λ which maximizes ω(π∗(λ)),

subject to the constraint λ > 0.

maximize ω(π∗(λ))

subject to λ > 0
(2.30)

The two problems, (LME) 2.28 and 2.30 will be solved jointly by introducing

λ∗ = inf{λ | ω∂(π∗(λ)) ≤ 0}. (2.31)

The constraint function ω∂ being inf-modular and h-increasing, corollary 2.9 applies,

and

0 ≤ λ∗ ≤ λ ⇒ π∗(λ∗) �∂ π∗(λ) ⇒ 0 ≥ ω∂(π∗(λ∗)) ≥ ω∂(π∗(λ)).

The domain of the feasible λ is therefore λ ≥ λ∗.

One must notice an immediate difference between the exact dual of the combinatorial

problem and the one proposed here. The space of solutions, in the latter are the λ-cuts

π∗(λ). We can now set the minimization problem more precisely. In case of the dual,

the idea is to span the multplier space.

Three conditions are needed:

1. Primal constraint qualification: the set Π′ is not empty,

2. Dual constraint qualification: λ∗ exists and is ≥ 0,

3. Relaxation: ω∂(π∗(λ∗)) = 0.

4. First order condition for minima replaced by lattice: inf Πω(E,B)

We observe that the two functionals ω(π∗(λ)) and ωϕ(π) are ordered. Indeed, the h-

increasingness of ω(λ) implies
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π∗(λ) �ω(λ) π ⇒ ω(π∗(λ)) ≤ ω(π, λ) π ∈ Π,

On the other hand, for every doublet π ∈ Π′ and λ ≥ λ∗ the Lagrangian ω(π, λ) is

smaller or equal to ωϕ, since its term λ ω∂(π) is ≤ 0 (condition 2 ):

ω(π, λ) ≤ ωϕ(π) π ∈ Π′, λ ≥ λ∗. (2.32)

Hence ω(π∗(λ)) ≤ ωϕ(π) and

∨
λ≥λ∗

ω(π∗(λ)) ≤
∧
π∈Π′

ωϕ(π), (2.33)

which is nothing but a transposed version of the weak duality inequality (2.17). As

π∗(λ∗) satisfies condition 3, the Lagrangian ω(π∗(λ∗)) is reduced to its term in ωϕ, i.e.

ω(π∗(λ∗)) = ωϕ(π∗(λ∗)) (2.34)

and the inequality (2.32), applied to the doublet {π∗(λ∗)}, gives

π ∈ Π′ ⇒ ωϕ(π∗(λ∗)) = ω(π∗(λ∗)) ≤ ω(π, λ∗) ≤ ωϕ(π). (2.35)

This results in ωϕ(π∗(λ∗)) ≤ ∧{ωϕ(π), π ∈ Π′}. But π∗(λ∗) is an element of Π′, hence it

belongs to the infimum, and

ωϕ(π∗(λ∗)) =
∧
{ωϕ(π), π ∈ Π′}, (2.36)

which solves the primal problem 2.28. Concerning the dual problem, we draw from

(2.33), (2.34), and (2.36) that
∨
λ≥λ∗ ω(π∗(λ)) ≤ ωϕ(π∗(λ∗)) = ω(π∗(λ∗)). The reverse

inequality also holds because the right member is an element of the supremum, and

finally

∨
{ω(π∗(λ)), λ ≥ λ∗} = ω(π∗(λ∗)) = ωϕ(π∗(λ∗)) =

∧
{ωϕ(π), π ∈ Π′}. (2.37)

The weak duality of Rel.(2.33) becomes strong duality for the doublet (π∗(λ∗), λ∗) of

arguments. This pair solves both primal and dual problems 2.28 and 2.30. At this stage,
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λ∗ is unique, but not necessarily π∗(λ∗). However, the uniqueness of the solution π∗(λ∗)

is attained when ωϕ is strictly h-increasing, by application of Proposition 1.16. This

happens, for example, when the energy ωϕ is linear. In conclusion, we can state:

Theorem 2.11. (Braid minimization by energy, scalar case). Given a braid B on E,

let {ω(λ) = ωϕ + λω∂ , λ ∈ R} be a scalar Lagrange family of energies where in addition

ωϕ, ω∂ and ω(λ) are h-increasing. And let λ∗ = inf{λ | ω∂(π∗(λ)) ≤ 0}. Now If we have,

(i) the set Π′ is not empty,

(ii) λ∗ exists and is ≥ 0,

(iii) ω∂(π∗(λ∗)) = 0,

then π∗(λ∗) and λ∗ are solutions of the problems 2.28 and 2.30 respectively. When ωϕ

is strictly h-increasing, then the solution π∗(λ∗) is unique.

Conversely, if Π′ is empty, or if there is no λ such that ω∂(π∗(λ)) ≤ 0, then there is no

solution. If these two conditions are satisfied, but not the third one, the dual problem is

still solved by λ = λ∗, but not the primal one.

2.8.1 Vector case

Theorem 2.11 easily extends to the vector case, of Lagrangian

ω(π,λ) = ωϕ(π) +

p∑
1

λiω∂i(π). (2.38)

The previous set Π′ becomes the family Π′i = {π, π ∈ Π, ω∂i(π) ≤ 0}. Applying the

corollary 2.10 in the previous proof leads to the

Theorem 2.12. (Braid vector constraint minimization). Given the vector λ = λ1, λ2...λp

Let

ω(π,λ) = ωϕ(π) +

p∑
1

λiω∂i(π)

be a vector Lagrange family of energies. Put λ∗i = inf{λ | ω∂i(π∗(λ)) ≤ 0}, 1 ≤ i ≤ p,

and vector λ∗ = λ∗1, λ2...λ
∗
p. If

(i) the set intersection Π′ = ∩{Π′i, 1 ≤ i ≤ p} is not empty,

(ii) there exist p values λ∗i ≥ 0,
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(iii) ω∂i(π
∗(λ∗i )) = 0, 1 ≤ i ≤ p,

then π∗(λ∗) and λ∗ are respectively solutions of the problems 2.28 and 2.30. When ωϕ

is strictly h-increasing, then the solution π∗(λ∗) is unique.

Conversely, if Π′ is empty, or if there is one i at least such that ω∂i(π
∗(λ) is always > 0,

then there is no solution. If these two conditions are satisfied, but not the third one, the

dual problem is still solved by λ = λ∗, but not the primal one.

2.8.2 Costs

In the scalar case, one can interpret the constraint in terms of a cost C, by letting

ω∂(π) = ω′∂(π) − C, hence ω∂ ≤ 0 ⇔ ω′∂ ≤ C. Applied to cut π, this gives ω∂(π) =

ω′∂(π) − C. This amounts to a change of origin on the axis of the energies. If ω∂ is

inf-modular, of h-increasing, then ω′∂ also is, and Theorem 2.11 still applies. Figure 2.3

depicts a situation where the constraint is compared to a cost C.

In the vector case, similarly, p cost constants Ci, 1, 2, ...i, ..., p can complete the inputs

set, and be interpreted as the coordinates of a vector C in Rp. The vector Lagrangian

is now written

ω(π,λ) = ωϕ(π) +

p∑
1

λi[ω
′
∂i(π)− Ci], (2.39)

The ω′∂i are inf-modular, and the theorem 2.12 is valid for them. In the vector case, the

solutions of equation (2.39) are the doublets {π∗(λ∗),λ∗−C}, and in the scalar case the

doublet {π∗(λ∗), λ∗ − C}.

2.8.3 Discussion

We shall describe some of the similarities we have seen with the KKT conditions. The

feasibility assumptions in the KKT theorem 2.6 have counterparts in 2.11 and 2.12.

It is not surprising to find them again. Furthermore, the complementary slackness,

leading to strong duality, reappears in braid optimization via the condition 3 of Theorem

2.11. This condition 3 appears because we want that the minimal cut π∗(λ∗) in the

Lagrangian energetic lattice Π(ω(λ)), such that ω(π∗(λ∗)) ≤ 0, be also minimal cut in

the energetic lattice Π(ω∂). The counter example of section 2.3 shows what happens

when this condition is dropped.
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Four major differences separate KKT conditions and their counterpart conditions in the

optimization problem on braid:

1. The counterpart of the points x of Rn is now the cuts of Π(B) and these new

“points” are structured by several orderings and lattices.

2. The assumptions of “continuously derivable” functions f0, fi have no counterpart

in braid optimization. A topology on the set Π(B) would just be cumbersome.

The concept which replaces the first order minima condition in 2.6 is the infimum

of the energetic lattice Π(ω(λ)).

3. First order minima conditions are replaced inf-modularity.

4. The KKT conditions (2.6) when interpreted on a BOP, works by ordering the cuts

themselves (e.g. the energetic lattices of cuts versus the numerical one of energies),

and goes to energies in a second step, via h-increasingness.

2.9 Lagrange minimization by Cut-Constraints (LMCC)

In the two theorems 2.11 and 2.12, h-increasingness seems to be an artificial construction

residual of the dynamic program. We now will reformulate the minimization problems

directly in the refinement of partitions or cuts, getting closer to a lattice based approach,

in such a way that h-increasingness will no longer be required. We begin, by looking at

cuts Π(ω∂) by a given cut itself πC ∈ Π(E).

Problem 3. LMCC Primal problem: Find the minimal cut πϕ in the Energetic

lattice Π(ωϕ) which is constrained by a cut πC

minimize
π∈Π(ωϕ)

ωϕ(π)

subject to π �ω∂ πC
(2.40)

The set of feasible solutions for πϕ is clearly

ΠC = {π | π ∈ Π(E,B), π �ω∂ πC}

and πϕ = fϕ{π | π ∈ ΠC}.

Minimal cut using the energetic-lattice: Equation 2.40 refers here to a minimiza-

tion using two energetic lattice structures, and not just the numerical order of energies.
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This is a critical change in the method and approach to the minimization problem, as the

energetic lattice helps order the solution space and thus also the final optimum reached

by enforcing the singularity condition. This consists in finding the infimum in Π(ωϕ)

constrained by ω∂-energetically ordered cuts. For clarity, one must note here that this

requires interaction between two energetic-lattices.

As before, we introduce the Lagrangian ω(λ) = ωϕ+λω∂ , λ ∈ R, which induces the ener-

getic lattice Π(ω(λ)) of minimal cut π∗(λ). To obtain the optimal Lagrangian parameter

λ∗, we proceed as in classical Lagrangian dual, and obtain

λ∗ = inf{λ | π∗(λ) �ω∂ πC}

Problem 4. LMCC Dual problem: Find the parameter λ which maximizes the cut

π∗(λ) in the energetic lattice Π(ω∂):

maximize π∗(λ) ∈ Π(ω∂)

subject to λ ≥ 0
(2.41)

To solve both problems (2.40, 2.41) jointly, the following three conditions are required:

Theorem 2.13. Given a braid B on E, let {ω(λ) = ωϕ + λω∂ , λ ∈ R} be a scalar

Lagrange family of energies where in addition ωϕ, ω∂ , and ω(λ) are h-increasing. Let

λ∗ = inf{λ | π∗(λ) �ω∂ πC}. If

(i) Primal feasibility: the set ΠC = {π | π ∈ Π(E,B), π �ω∂ πC} is non-empty,

(ii) Dual feasibility: λ ≥ 0

(iii) Lattice Assumption: πϕ �ϕ π∗(λ∗)

then the set of feasible multipliers are λ ≥ λ∗, and π∗(λ∗) and λ∗ are the unique solutions

to the problems 2.40 and 2.41 respectively.

Proof. We first prove that the feasible set of multipliers are λ ≥ λ∗. If λ < λ∗, then

π∗(λ) does not belong to the space ΠC of solutions πϕ. The class S(λ) of π∗(λ) at

leaf x, contains one or more classes of π∗(λ∗) which form a partial partition a(λ∗). By

proposition 2.8 ω∂(a(λ∗)) ≤ ω∂ [S]. Moreover, as λ varies there is a finite number of

different sets S (axiom (ii) of the braid definition 1.18), so that ω∂ [a(λ)] is necessarily

one of the ω∂(S), hence π∗(λ∗) �∂ πC . Therefore π∗(λ∗) ∈ ΠC which implies πϕ �ϕ
π∗(λ∗), and by assumption (iii) πϕ = π∗(λ∗). The minimal cut (in the Energetic-Lattice

Π(ω(λ∗)) is the solution of the primal LMCC problem 2.40, and the solution is unique

since πϕ must be the minimal element of a lattice. In the ω∂-energetic lattice Π(ω∂) we
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have λ ≥ λ∗ implies π∗(λ) �∂ π∗(λ∗) = πϕ, hence g∂{π∗(λ), λ ≥ λ∗} �∂ π∗(λ∗), and

finally π∗(λ∗) = g∂{π∗(λ), λ ≥ λ∗}, which solves the LMCC dual problem 2.41.

The comparison between the two LME and LMCC approaches is instructive. It shows

how h-increasingness is not really essential, and that Lagrangians still work for lattices of

partitions ΠC , and not only for the numerical lattice of the energies Πω’s. But the most

interesting feature is that theorem 2.13 applies to family of partitions of possibly infinite

space E, as long as the number of classes is locally finite. This situation occurs quite

often in the “remote sensing”, where the area under imaging is incomparably smaller

than the actual span of study. The LMCC provides such an independence (while not

the LME) on account of the association an optimum with each leaf.

2.10 Class constrained minimization (CCM)

We now study a stricter constraint model of Class-local constraint. This restricts the

constraint function to be defined now the classes and no more on the partitions. Fur-

ther we see how this becomes purely a energetic lattice based solution to the solve the

constrained optimization problem.

2.10.1 Single constraint

This section treats firstly the case of hierarchies and then that of braids, and develops an

alternative method for constrained optimization, which does not resort to Lagrangians.

The hierarchy under study here is considered to be finite, and energies ω∂ , ωϕ : S → R+

are defined on classes. Consider the following optimization problem:

CCM problem

minimize
π∈Π(ωϕ)

ωϕ(π)

subject to ω∂(S) ≤ CS ,∀S ∈ π
(2.42)

The method consists in generating a new hierarchy H ′ where the minimization of ωϕ is

no longer conditioned. Let Π(CS) stand for the family of the cuts π of a hierarchy H,

where constraint function values for each class S is bounded to CS .

π ∈ Π(CS) ⇔ {S v π ⇒ ω∂(S) ≤ CS}. (2.43)

Obviously, the problem is feasible if and only if Π(CS) is not empty.
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Proposition 2.14. If the family Π(CS) is not empty, it is closed for the refinement

infimum and supremum.

Proof. As the number of levels of H is finite, it is sufficient to prove that {π1;π2} ∈
Π(CS) implies that {π1 ∧ π2;π1 ∨ π2} ∈ Π(CS). Consider π = π1 ∧ π2. At leaf x ∈ E let

the class of π1 be S1 and let that of π2 be S2. If S2 ⊆ S1, the p.p. a2 of π2 of support

S1 is the minimum of π1 ∧ π2 in S1, and vice versa. In both cases the two infima have

energies bounded by CS . This property remains true as point x spans E, the infimum

π1 ∧ π2 belongs to Π(SC). One continues similarly for π1 ∨ π2.

Since the family Π(CS) is closed under the refinement infimum, it admits a smallest

element π0

π0 = ∧{π, π ∈ Π(CS)} (2.44)

The classes of π0 can be interpreted as the set of leaves of a new hierarchy H ′, identical

to H above and on π0, but where all classes below π0 are removed (see Figure 2.5).

The cuts π of new hierarchy H ′ are exactly those of H that satisfy the class constraint

ω∂(π) ≤ CS . The problem now reduces to find the non-conditional minimal cut of

H ′ w.r.t. ωϕ, a question that we already know how to treat. If the minimization is

considered in the ωϕ-energetic lattice Π(ωϕ, H
′) relative to H ′, we just have to suppose

ωϕ is a singular energy. If we want that the minimal cut π∗ϕ induces a minimal energy,

then, according Rel.(1.26), we must take ωϕ h-increasing (in addition π∗ϕ is then found

in one bottom-up pass). Now we can state:

Proposition 2.15. When ωϕ is a singular and h-increasing energy, then the minimal cut

π∗ϕ in the ωϕ-energetic lattice Π(ωϕ, H
′) is also a cut of smallest ωϕ energy in Π(ωϕ, H)

whose all classes S∗ satisfy the cost constraint ω∂(S∗) ≤ C.

The result is important. It grants the existence and the uniqueness of the minimal cut

π∗ϕ under very large conditions: no prerequisite is needed for ω∂ , and uniquely singularity

and h-increasingness for ωϕ. Note that the cost C has not to stay constant. Equivalence

(2.43) holds on each class separately. C may vary through the space, or according to

the level i in the hierarchy.

When the energy ωϕ is also increasing w.r.t. the refinement of the cuts (e.g. the quadratic

deviation term Mumford-Shah energy), i.e. when:

π1 ≤ π2 ⇒ ωϕ(π1) ≤ ωϕ(π2), (2.45)

then the minimal cut π∗ϕ coincides with π0, since
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π0 ≤ π ⇒ ωϕ(π0) = ∧{ωϕ(π), π ∈ Π(CS)} = ωϕ(π∗ϕ). (2.46)

2.10.2 Implementation for inf-modular ω∂

It remains to build up the hierarchy H ′ i.e. to find the leaves π0. The search being

combinatorial, the complexity reason drives us to call for inf-modularity for ω∂ . Put

ω∂(S) ≤ ∧{ω∂(T ), T son of S}, (2.47)

i.e. the energy ω∂ of class S is smaller or equal to the smallest energy of the sons of S.

Such class inf-modularity acts on classes and no longer on p.p. as Rel.(1.46), but both

are equivalent. The inequality (2.47) is preserved indeed when any son T is replaced

by its own sons, which allows us to progressively obtain any p.p of the right member

of (1.46). Conversely, it suffices to particularize Rel.(1.46) to the sons of S for finding

Rel.(2.47).

Fast implementation is then obtained by the following greedy top-down algorithm :

- index the classes of H by a lexicographic ordering from the root E to the leaves;

- starting from E, go down;

- when class S has all its sons T such that ω∂(T ) ≤ CS , then replace S by its sons;

- otherwise don’t perform the replacement (this because, according to Rel.(2.47),

every cut of the sub-hierarchy of root S presents at least one class T such that

ω∂(T ) > CS , and the replacement would introduce undesired classes). Then keep

S and continue;

- iterate until all leaves have been processed.

The partition π0 is obtained at the end of the scan, i.e. in one pass. A toy example is

given in Figure 2.5.

W.r.t. the ω∂-energetic lattice Π(ω∂ , H
′), the cut π0 turns out to be a maximum:

Proposition 2.16. When ω∂ is singular and inf-modular, then the infimum π0 of Π(CS)

is nothing but the maximal cut π∗∗(ω∂) whose ω∂ energy is ≤ C in the ω∂-energetic lattice

Π(ω∂ , H
′).
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Figure 2.5: Minimal CCO cut. The + classes have ω∂ > C, the − classes have
ω∂ ≤ C.

Proof. Compare π0 with any cut π ∈ Π(CS). The class S of π that contains leave x

is the support of a p.p. a0 of π0, since π0 ≤ π. Then the inf modularity (2.47) gives

ω∂(S) ≤ ω∂(a0), which results in π �ω∂ π0 when x spans E. As this is true for all cuts

π ∈ Π(CS), we obtain π∗(ω∂) = π0.

2.10.3 Class constraint versus Lagrange minimization by energies

What is the relation between the above results and those we can get by using ω∂ as the

constraint term in a Lagrange family? Suppose ω(λ), ωϕ, and ω∂ singular, and extend

ω∂ to partitions by ∨-composition:

ω∂(π) = ∨{ω∂(T ), T v π}. (2.48)

The energy ω∂ inf-modular, since equality (2.48) remains valid when π is reduced to

the single class {S}. Therefore, according to Definition 2.7, the family {ω(λ) = ωϕ +

λω∂ , λ ∈ R} is Lagrange. As above, π∗(λ) stands for the minimal cut of the Lagrangian

energetic lattice Π(ω(λ), H}. We saw (Proposition 2.8) that the function λ → π∗(λ)

is increasing for the refinement, and π∗(λ) → ω∂(π∗(λ)) decreasing, so that there is a

maximal ω∂(π∗(λ0)) ≤ C. Suppose ωϕ strictly increasing for the refinement ordering;

it is thus h-increasing. If π0 < π∗(λ0) then ωϕ(π0) < ωϕ(π∗(λ0)) which contradicts the

meaning of a minimum of ωϕ(π∗(λ0)) (Rel.(1.26)). On the other hand, we also have

Eq.(2.46), which leads to π0 = π∗(λ0), and we can state:

Proposition 2.17. Let {ω(λ) = ωϕ + λω∂ , λ ∈ R} be a Lagrange family where ωϕ is

strictly increasing and ω∂ is obtained by ∨-composition (Eq.(2.48)). Then the minimal

cut π∗(λ) equals the minimum π0 given by Eq.(??).
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2.10.4 Vector case (multi constraints)

The multi-constraints situations are matter of the same approach. The minimization of

ωϕ is now subject to p constraints ω∂i(S) ≤ Ci. Denote by C the cost vector C = {Ci,
1 ≤ i ≤ p ≤} The familyA(C) is that of the cuts whose classes S satisfy the p constraints

ω∂i(S) ≤ Ci. The proposition 2.14 extends to this vector cases:

Proposition 2.18. The family A(C) is closed for the refinement infimum and supre-

mum.

Proof. We keep the notation used in the proof of proposition 2.14. Let π1 and π2 be two

elements of A(C). If S2 ⊆ S1, the p.p. a2 of π2 of support S1 is the minimum π1 ∧ π2

in S1, and all classes S of a2 satisfy the p conditions ω∂i(S) ≤ Ci. The same occurs if

S1 ⊆ S2, which results in that π1 ∧ π2 belongs to A(C), and achieves the proof

We can also view the situation when one constraint at least is satisfied (a case impossible

to treat with Lagrangians). The family A(C) is replaced by B(C) such that

π ∈ B(C) ⇔ {S v π ⇒ ∃i | ω∂i(S) ≤ Ci}.

and the previous proposition becomes:

Proposition 2.19. The family B(C) is closed closed for the refinement infimum and

supremum.

(Proof similar to the previous one). Like in case of a single constraint, both A(C) and

B(C) lead to hierarchies H ′ with a unique π0. Proposition 2.15 and the greedy algorithm

still apply, with minor changes.

Extension to braids:

The class constrained minimization that we just developed for hierarchies extends to

braids under one more condition. As Proposition 28 involves the refinement minimum

of two partitions, i.e. of horizontal of cuts of H, we must also assume that the refinement

minimum of two partitions of a braid is a partition of the hierarchy. It is clear that when

this condition is fulfilled, then all results of the current section remain valid for braids.

2.10.5 Overview of the three models

The three models for constrained optimization on Braids and thus also hierarchies, basi-

cally introduces three different ways of introducing the constraint: Firstly LME, which
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uses a numerical constraint on composition of energies of partial partitions constitut-

ing any cut, secondly LLCM, where the constraint is cut belonging to solution space

and thus using lattice structure. Finally and thirdly, CCM, which provides a numerical

constraint for each class.

CCM vs LME: CCM solves the problem of finding the cut of a hierarchy with least

energy ωϕ under the constraint ω∂ ; while LME provides an upper bound π∗(λ0); One

should also note that CCM is valid for hierarchies, LME for the larger class of braids.

In CCM, the mapping π → ωϕ(π) holds globally on the cuts π, it is just supposed to

be increasing, which is not very demanding; and ω∂ is inf-modular; in LME ω(λ) is

singular, ωϕ is h-increasing, and ω∂ is inf-modular and h-increasing.

Another difference is that the CCM model is local, in the sense that the constraint ω∂

is allocated to every class of the cut under study, and it becomes also global when one

take the supremum for law of composition ( i.e. when the energy ω∂ of a p.p. equals

the supremum of the energies of its classes); for the implementation it is assumed that

ω∂ is inf-modular. CCM can use non-local costs C which may vary over the space E, or

remain constant.

Finally one can note that in CCM, the extension to the multi-constrained cases is

straightforward, and concerns both logical and and or of constraints. This latter mode

is out of the scope of LME.

2.11 Primal Vs Dual: C-cuts Vs λ-cuts

In this section we shortly discuss the scale-sets descriptor of Guigues [47], and multipler

approximation by Salembier-Garrido [42], and provide interpret a primal version of the

climbing algorithm, and why it is cumbersome. Both Guigues and Salembier-Garrido

search values of the Lagrangian multiplier λ, so as to obtain a cut π which reaches or

is closest to an input or given constraint function value ω∂(π) ≤ C. We know that the

solution to the dual, lower bounds the solution to the primal problem. Furthermore we

have also seen that the non-existence of multipliers refers also to the lack of existence

a strong duality. Thus spanning the λ-cuts at best provides us, in this case, with an

upper-bounding cut. This is one of the important results in this chapter.

Dual Domain Composition: Furthermore a composition by addition of child energies

ωϕ(Ti), ω∂(Ti) associates with each braid and thus hierarchy, a Λ, i.e. scale function.

In this dual domain, one can see that the scale-climbing corresponds to a “composition

by supremum” of the Lagrangian parameters. This basically correponds to the infimum

over the multiplier values in guigues are our result.
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We have up until now, seen the following types of optimization on BOP/HOP:

1. unconstrained optimization of ω(π), π ∈ Π(B,E) using dynamic program

2. constrained optimization of ωϕ(π) subject to ω∂(π), for π ∈ Π(B,E), using dy-

namic program on the space multipliers λ. (DP on Dual Problem)

both using the energetic lattice structure to ensure an optimum.

Now we will consider the problem (2) above in the primal domain, and establish why it

is easier consider the dual domain.

These are the family of cuts in the braid whose constraint function has a value smaller

than C. One thing that can be directly noted about these partitions are that they

are in any sense monotonically ordered w.r.t C. Furthermore we can see the nature of

the energetic lattice unravel itself with this simple parametrized family of cuts. This is

demonstrated in figure 2.4.

The λ-cuts also have the same problem, except that the implicit condition of having

the largest partition by Guigues, Breiman and various other authors, provides a unique

solution. This has been explicited in two forms, first as scale-increasingness condition

on the energies and, second as singularity condition, which ensures a unique minimum.
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2.12 Summary

Chapter contribution summary

I We have shown that the λ-cuts correspond to an upper-bound and is not a

global solution to a constrained optimization problem on HOP and BOP.

I The solutions in fact are shown to be a Lagrangian relaxation of the original

constrained optimization problem, who solutions are global only at the cost

endowed by the multiplier value.

I We demonstrate three locally constrained optimization models, that use the

partition itself as constraints, enforcing further the energetic lattice structure.

I We also demonstrate basic perturbation and penalty methods to obtain a

better bounding λ-cut. An interesting prospect would be to use a energetic

lattice based perturbation for quicker convergence rates. A further analysis

of the problem would be to consider the global convergence analysis of the

constrained optimization problem on HOPs and BOPs. In such a context we

propose three different models.

I In using the energetic lattice for constrained optimization, we have three dif-

ferent classes of constrained optimization problems that correspond to the

three different ways of enforcing a constraint:

– Lagrangian Minimization by Energy(LME): (By numerical constraint on

engery) Energetic lattice based generalization of the Lagrangian, when

one works in the space of partitions from a Braid, instead of Rn.

– Lagrange minimization by Cut-Constraints (LMCC): (By a partition con-

straint) We introduce a partition based constraint optimization model,

which does not involve any numerical constraint function, but one that

is driven by the energetic lattice.

– Class constrained minimization (CCM): (By numerical constraint on en-

gery on a class) The third model demonstrates how the energetic lattice

handles local constraints. There is no Lagrangian formulation here.
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Chapter 3

Applications of Energetic Lattice

Publications Associated with Chapter

• [59] Global-local optimizations by hierarchical cuts and climbing energies, Pat-

tern Recognition(PR) 2014.

• [103] Optima on Hierarchies of Partitions, ISMM 2013.

• [61] Ground truth energies for hierarchies of segmentations, ISMM 2013.

This chapter demonstrates the applications of dynamic program for energetic lattices,

involving different compositions of energies. A specfic contribution and application is the

formulation of proximal partition extraction. This consists in extraction of a partition,

given a hierarchy of segmentations and a ground truth partition corresponding to an

image, that is closest to the ground truth or marker partition.

3.1 A few useful h-increasing energies

Following the description of h-incresingness and the different compositions of energies

possible we briefly describe a few common segmentation models that can be formulated

as h-increasing energies.

3.1.1 Mumford and Shah energy

One of popular, notably non-convex image segmentation model is the Mumford-Shah

functional [85]. One can find an exhaustive study of this functional in Morel et al.’s

book [82], where it is formulated in the Euclidean plane using edges which are composed

of rectifiable simple arcs.
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ω(π(S), λ) = ωϕ(π(S)) + λω∂(π(S)) =
∑

1≤u≤q

∫
x∈Tu

‖ f(x)− µ(Tu) ‖2 +λ
∑

1≤u≤q
(∂Tu)

(3.1)

This can be generally written as an affine energy of the form

ω(S, λ) = ωϕ(S) + λω∂(S) S ∈ S. (3.2)

The first term, ωϕ, is the additive fidelity term which sums up the quadratic deviations

from the mean value µ(Tu) over the class Tu over different u producing a partial parti-

tioning of class S, and the second term ω∂ = ∂Tu, the lengths ∂Tu of the frontiers of all

Tu.

Both increasingness relations, h-increasingness and scale-increasingness (1.27) and (1.42),

are satisfied by the family of energies ω + ϕ, ω∂ in eqn (3.1). For short these energies

are called climbing.

When the energy ω∂ is sub-additive, i.e.

ω∂(
⋃

1≤u≤q
Tu) ≤

∑
1≤u≤q

ω∂(Tu), (3.3)

then the family is obviously scale increasing, since

ω∂(S) = ω∂(
⋃

1≤u≤q
Tu) ≤

∑
1≤u≤q

ω∂(Tu) = ω∂(π(S)).

Conversely, L. Guigues has shown that the condition (3.3) is necessary for scale increas-

ingness [47].

3.1.2 Additive energy by convexity

The arc length function is not the only choice. One can also think about another ω∂(S),

which reflects the convexity of the class S. Consider in R2 a connected set S without

holes and with a non zero curvature everywhere on ∂S. Let dα be the elementary

rotation of its outward normal along the element du of the frontier ∂S. As the curvature

c(u) equals dα
du , and as the total rotation of the normal around ∂S equals 2π, we have

2π =

∫
c≥0

c(u)du−
∫
c<0

|c(u)| du.
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When dealing with partitions, the distinction between outward and inward vanishes, but

the parameter

ω∂(X) =
1

2π

∫
∂S

|c(u)| du (3.4)

still makes sense. It reaches the minimum value 1 when set S is convex, and increases

with the degree of concavity. For a starfish with five pseudo-podes, it values around 5.

Now ω∂(S) is sub-additive for the open parts of contours, therefore it can participate as

a regularity term in an additive energy. In digital implementation, the angles between

contour arcs must be treated separately (since sub-additivity applies on the open parts).

3.1.2.1 Additive energies by active contours

The active contours aim to match regular closed curves with the zones of maximum

variation in an image, example the Snakes or Chan et al.s Active contours [24, 57]. The

energies we view are particular cases of active contours adapted to hierarchies, and derive

from the approach proposed by Y. Xu at Al. [124]. The main idea is the following: each

node S ∈ H is dilated and eroded by a disc B, and the two crowns S ⊕ B\S, and S\
S 	B are compared. This comparison stands for the fidelity term ωϕ in Rel. (3.2), and

a function of the curvature (e.g. Rel. (3.4)) stands for the regularity term. One goes

from sets to partial partitions by additivity, according to the relation (1.31).

The simplest comparative energy is given by the difference of a given energetic function

f on the two crowns:

ωϕ(S) =|
∫

(S⊕B\S)
f(x)dx−

∫
(S\S	B)

f(x)dx |, S ∈ P(E). (3.5)

It can be expressed in a dimensionless form by putting:

ω̃ϕ(S) =|

∫
(S⊕B\S) f(x)dx−

∫
(S\S	B) f(x)dx

a(S)
|, S ∈ P(E),

where a(S) denotes the area of S. When the absolute value bars are removed, the both

energies ωϕ and ω̃ϕ become sub-additive. Alternatively, the energy ωϕ proposed in [124]

is the sum of the variances of f in the two crowns, divided by the variance of f in the

union of these two crowns.

For the regularity term ω∂ of the energy (3.2), one classically takes the above function

ν of Rel. (3.4), which is scale increasing and generates the climbing family {ωϕ + λω∂}.
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3.1.3 Mumford-Shah Energy for Color image segmentation

We aim to find an optimal cut which provides the simplified version of a colour image

f , constrained by compression rate. A hierarchy H has been obtained on input image

figure 3.1, by segmentations of the scalar luminance l = (r + g + b)/3 based on flooded

watersheds [32]. In each class S ∈ H, the simplification consists in replacing the function

f by its mean value of colors, i.e. the means of the three channels over S. Note that this

colour mean does not intervene directly in the three energies (3.6) to (3.8), but rather

in the display of the optimal cut. We use the energy ω(S), as defined in equation (3.2)

to demonstrate different optimal cuts.

For the first experiment, as the data fidelity term ωϕ(S) we take the variance of the

luminance for each class S of hierarchy H (first term of equation (3.6)). The regulariza-

tion term ω∂(π), is equal to the contour length | ∂S |, plus 24 bits for the average color

of S. This gives the energy ωlum(S), whose result is shown in figure 3.1 (left).

ωlum(S) =
∑
x∈S
‖ l(x)− l(S) ‖2 +λ(24+ | ∂S |), (3.6)

In a second experiment depicted in figure 3.1(right), we separate each colour vector

(r, g, b) into two components: the vector luminance
−→
l = (l, l, l) which gives the gray

scale, plus the orthogonal chrominance vector −→c = (r −m, g −m, b −m) = (c1, c2, c3)

whose module is the saturation.The fidelity term of the energy is now the sum of the

variances of the components of −→c over S as shown in (3.7).

ωchrom(S) =
∑

x∈S,1≤i≤3

‖ ci(x)− ci(S) ‖2 +λ(24+ | ∂S |), (3.7)

The principle idea demonstrated by this experiment is the independence between the

function generating the hierarchy and the energy creating the energetic ordering or

lattice, and the imminent minimization by a dynamic program. We observe in figure 3.1

(right) that the plant in front of the female duck are now correctly segmented, and that

the water in the background has lesser detail.

ωTexture(S) = ωchrom(S) +
∑

S′∈siblings(S)

µ

σ2(Area(S′))
, (3.8)

This leads to a third experiment, depicted in figure 3.2, based on energy in equation (3.8).

This experiment is to extract textures parametrized by regularity. The energy (3.8) in is

similar to (3.7), except for the term in which is inversely proportional to the quadratic
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Figure 3.1: First row: Initial image and Saliency function corresponding to hierar-
chical watershed flooding [32]. Second Row: Optimal cuts by using variance of lumi-

nance(left), chrominance(right).

Figure 3.2: Optimal Cuts for texture using variance of chrominance for scale λ = 100:
Left, input Image, middle and right, cuts for parameters at µ = 1012 (low uniformity)

and µ = 1014 (high uniformity), in Eq. 3.8.

deviation of sizes (area) of the children from the mean size of the children, which is a

trivial h-increasing energy. Furthermore the fidely term is a quadratic deviation of the

chrominance vector being minimized on the partitions of hierarchy produced from the

luminance vector l. This experiement basically shows that the optimal partitions that

are extracted by using minimal norm of a vector does not remain the same when one

obtains when using their components.

Intuitively, texture features are formulated into this multi-scale framework where obtains

a two level filtering scale parameter, which combines the effect of minimal deviation of

chrominance and structure of texture into one global energy function. λ controls the

perimeter of the segmentation, while µ constrols the regularity of classes in the segmen-

tation. The monotonicity of the segmentations in the optimal hierarchy becomes a bit

more complicated and is subject to more detailed study, since the pair π(λi, µk), π(λj , µl),

for i < j, k < l are cuts that are not predestined to be ordered, and would require a more
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general law of scale-increasingness. This demonstration basically shows the flexibility of

the multiscale-energy formulation.

We conclude this section by quoting Salembier and L. Garrido [100], and L. Guigues [49],

who demonstrate constrained optimization on HOP, by replacing the gradient descent

by climbings dynamic program for family of h-increasing energies.

3.1.4 Hierarchical structure based energies

In this experiment we demonstrate how one can use the hierarchical structure itself as

a constraint. This is possible by using the integral of the saliency function on support

of the contours of the partial partitions (and not purely the length of partial partition).

That is a numerical measure g(x) = 1− s(x) is introduced on the perimeter ∂S

ωg(S) =
∑

x∈S,1≤i≤3

‖ ci(x)− ci(S) ‖2 +λ

∫
∂(S)

g(x)dx, (3.9)

This constraint function requires that the saliency value on the partial partitions be

the highest, while having a minimal ωϕ. A high saliency function value implies higher

level in the hierarchy. This enables the use of saliency function itself as a multi-scale

constraint function. In our example we use saliency function’s value which corresponds

to the connection value of watershed floodings by volume [32]. This is demonstrated

with a set of optimal cuts at different values of λ.

One can also use a value which is not dependent on the gradient function but a proximity

function to a ground truth. This will be demonstrated in the following section.

3.2 Ground truth Proximal Energies

In this section we concentrate on a particular application which is supervised image

segmentation evaluation. More specifically we will look at ground truth set based seg-

mentation evaluation. For this purpose we work on the Berkeley Dataset [10]. This

chapter focusses on the case when the segmentations are part of a hierarchy and dif-

ferent ground truth sets provide different qualitative information on the segmentation.

The motivation in ground truth based evaluation of hierarchicy of segmentations lies

in the key fact that the ground truth partition can be found at a finite scale or cut in

the hierarchy of segmentations, above and below which the cuts become non-optimal,
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resulting in sub-optimal F-measures. This is refered to in [94] as the upper-bound par-

tition selection, and poses it as a combinatorial optimization problem. Here we will

motivate the requirement of an energetic lattice and the h-increasing energy that can be

formulated using Haussdorf distance to solve the same problem. This provides a way to

climb up to the partition closest to the ground truth partition.

3.2.1 Ground truth evaluation

Here we introduce the problem of ground truth evaluation of hierarchies of segmentations

a bit more strictly. First let us determine our inputs and outputs we desire from the

problem. Given a hierarchy of segmentations H and a ground truth partition G we

would like to determine:

1. The cut π∗ in hierarchy H that is closest to ground truth partition G. Here we

will use the localised Haussdorf distance to define a maximal distance between two

a cut in the hierarchy and a ground truth set. This gives two energies associated

to the two sense’s of proximities:

• Hierarchy to Ground truth partition: π → G, π ∈ H.

• Ground truth partition to Hierarchy: G→ π, π ∈ H.

2. Compare any hierarchy H with multiple ground truth partitions of the same image.

3. Compare any two hierarchies with respect to a common ground truth partition.

We demonstrate in figure 3.3 how the above problem is a scale selection problem by a

toy example.

3.2.2 Segmentation Versus GT Partitions: Refinements and Overlaps

In this section we consider the different topological possibilites between the classes of the

ground truth partition and segmentation being evaluated. This has been first addressed

elaborately in [70]. He associates the variablity in human segmentation to different

perceptive differences between human annotators: mainly classifying them as varying

attention to detail in the scene, thus producing refinements of the same object or region

in the image.

To the ends of classifying the different situations possible between a ground truth par-

tition and a Image segmentation, Tuset et al (following Martin’s error measures LCE,

GCE) [93] classifies them into 4 classes (see figure 3.4):
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Figure 3.3: The first row shows an input image, with two ground truth partitions
corresponding to the image, from the Berkeley dataset. The bottom row consists of a
sequence of thresholds of the Ultrametric Contour Map(UCM) segmentation hierarchy.
The problem now consists in extracting a proximal partition in the hierarchy that is
closest to one of these ground truth partitions. Further how do we compose when we
have multiple ground truth partitions, and how do we compare hierarchies w.r.t a single

ground truth.

1. Oversegmentation: When the union of a finite set of classes in the segmentation

is a class of the ground truth partition. In other words, the segmentation is locally

a refinement of the ground truth partition.

2. Undersegmentation: When the union of a finite set of classes in the ground

truth partition is a class of the segmentation. In other words, the ground truth

partition is locally a refinement of the segmentation.

3. Overlaps: When the classes of the segmentation and ground truth overlap but

do not produce refinements. This termed as noise in case of [93].

4. Braids: When the same support is segmented in a non-nested structure. The

supremum of the two partial partitions have the same support, in other words

the same monitor. This difference in local segmentation can result, when we

have textured regions or smooth zones which are differently segmented by human

experts. This has been observed in the evaluation of segmentation algorithms by

Unnikrishnan et al. [115]

To be more precise, the cases 1,2,4 are all in the general structure of a Braid of partition.

Now a single or a set of ground truths can demonstrate either one or all of these character-

istics. Here we demonstrate how the refinements are handled using the inf-composition.

For a similar study on the saliency function, please see 4.7.5.
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Figure 3.4: Example demonstrating two partitions π1 and π2, where one of them could
be a ground truth segmentation while the other being a machine segmentation. Figure
demonstrates the different possible configurations of refinement, braid and overlaps of

classes.

3.2.3 Segmentation Evaluation Measures

The comparison of two segmentations of the same image is not clear, as image segmen-

tation is inherently ill-defined: there is no single ground truth (partition, since when we

compare segmentations it necessitates that the ground truth is a partition too!) that

can capture the faulty and correct labellings in the two segmentatations [115]. Once this

is lack of definition is noted, one can find heuristic assumptions on the correspondence

between ground truth set and segmentation, providing us with a variety of evaluation

measures in literature. We cite few which are important for our discussion later. The

measures evaluating hierarchy of partitions has been studied extensively in the thesis by

Tuset et al. [93].

1. Many region based measures have the Jaccard distance between sets as a begining

point. The Jaccard index between finite sets S, S′ is given by:

J(S, S′) =
S ∩ S′

S ∪ S′
(3.10)

The Jaccard distance is given by:

dJ(S, S′) = 1− J(S, S′) = 1− S ∩ S′

S ∪ S′
(3.11)
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2. We can have different refinement between the ground truth partition and the image

segmentation. That is if subsets of regions in one segmentation consistently merge

into some region in another segmentation the consistency error is low [70]. The

refinement-invariant evalation measures include Global Consistency Error(GCE)

and Local Consistency Error(LCE). The Global Consistency Error (GCE) assumes

that one of the segmentations must be a refinement of the other, and forces all

local refinements to be in the same direction. The Local Consistency Error (LCE)

allows for refinements to occur in either direction at different locations in the

segmentation.

3. Segmentation Covering [10]:

The overlap between two regions (classes of segmentation S or S′) R and R′, is

defined as:

O(R,R′) =
R ∩R′

R ∪R′

and the segmentation covering is defined as:

C(S → S′) =
1

N

∑
R∈S
|R| · max

R′∈S′
O(R,R′) (3.12)

4. Boundary based measures: D.Martin thesis [70] provides a variety of Ground truth

based evaluation measures. Using the boundary of segmentations, the unitary ele-

ment: Edgel, where he performs edgel correspondence between the segmentations.

This is an example of contour/boundary based measure.

It would be interesting now to observe that the contour based measures are sensitive

to the placement of class contours w.r.t each other unlike the region based measures.

It is important to note that a single human annotated ground truth rarely provides an

objective segmentation containing all objects of interest. Figure 3.5 demonstrates the

problem across different Ground truth partitions of the same image.

3.2.4 Haussdorf Distance

The Haussdorf distance is a tool used in the image processing community to compare

images (cites needed). It is well known that the Hausdorff distance is a metric over

the set of all closed, bounded sets, while satisfying properties of identity, symmetry and

triangle inequality.

Let E, d be a metric space of distace d and let A,B ⊂ E be non-empty subsets of space

E. The Haussdorf distance can be defined now as:
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Figure 3.5: GT’s corresponding to an input image. This demonstrates how the human
experts in this case have drawn different scales of details in the scene. All scales are not
present in no single GT partition. This as described well across literature is due to the
ill-posedness of the segmentation problem. The OIS averages the results of choosing the
right scale of partition from the UCM across various GTs to evaluate the segmentation
hierarchy. We will use instead an inf-composition to extract the proximal partition. We

remark the inherent braid structure in such cases.

dH(A,B) = max sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b) (3.13)

The Haussdorf distance in equation (3.13) can be calculated by the supremum of minimal

radii of dilation by a ball of one set to cover the other set [102]. If δr(X) represents a

dilation of set X by a compact ball of radius r, then:

dH(A,B) = inf{r : B ⊆ δr(A);A ⊆ δr(B)} (3.14)

equivalently for an erosion operation εr(X),

dH(A,B) = inf{r : εr(A) ⊆ B; εr(B) ⊆ A} (3.15)

Problems with the Haussdorf Distance: The Hausdorff distance is very sensitive

to even a single “outlying” point of A or B. In the case of classes of partitions this

corresponds to a small convexities/concavities in shapes that produces large values of

haussdorf distance between the sets or classes. The staggered class determines by its

distance alone the Haussdorf distance H(A,B) between the two sets, and subsequently
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Figure 3.6: Haussdorff distance Assymetry: Smallest disc dilation of X that contains
Y is drastically larger than theat of X to contain Y, thanks to a the difference in
convexities of the shape. The same situations occur when dealing with classes of a

partition.

the partitions. This is a well known problem with the Haussdorf distance. This is

demonstrated in figure 3.6.

We have to address thus two questions:

• How to define the Haussdorf distance for partial partitions or classes of partition?

• How to handle asymmetric shapes by formulating a composition of energies over

the partial partitions ?

Felzenszwalb et al. propose the use of a dynamic program approach using curves of

shapes, ordered in a tree [41] for deformable shape matching.

3.2.5 Hausdorff distance

Most of the supervised evaluations of hierarchies, including Arbelaez et al., Tuest et

al. [7, 10, 94], derive from the intuition of the Hausdorff distance, in various critical

manners. Let us briefly recall this background.

In a metric space E of distance d we aim to match the support S(π) of a bounded partial

partition π with a set G of points and lines, considered as a GT drawing. The smallest

isotropic dilation of G that covers the contour S(π) has a radius

ρG = inf{ρ | G⊕ ρB ⊇ S(π)}, (3.16)

where ρB is the disc of radius ρ centred at the origin. One can interpret ρG as the

“energy” required for reaching ∂S from the GT G. In the same way, the counterpart

covering is given by the radius ρA:
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ρA = inf{ρ | S(π)⊕ ρB ⊇ G}. (3.17)

By introducing the so called distance function d(x, Z) from point x to the fixed set Z,

i.e.

d(x, Z) = inf{d(x, z), z ∈ Z} x ∈ E (3.18)

we see that

ρG = sup{d(x,G), x ∈ S(π)} and ρA = sup{d(x, S(π)), x ∈ G}, (3.19)

an interpretation which connects the distance function with the partial order on sets by

inclusion. In Rel.(3.19) the value ρG (resp. ρA) is the maximal distance from a point of

∂S to G (resp. of G to ∂S). The first one, ρG, indicates how precise is S w.r.t. the GT,

the second one, ρA, how representative is this GT. In indexation, these two numbers are

respectively named precision and recall. The symmetric expression ρ = max{ρG, ρA} is

the well known Hausdorff distance

Hausdorff distance is lacking of finesse because it is a global notion, and of robustness

because it uses suprema. If we could define a local equivalent, associated with each

class T of π, and no longer with the whole S(π) itself, then the regions with a good fit

would be treated separately from the others. And in addition, if this equivalent was h-

increasing, then it would provide an energy for calculating easily the associated optimal

cut [59], i.e. the smallest upper bound of all cuts of the hierarchy, in the wording of

[94]).

3.2.6 Half Haussdorf distances

Composition of Ground truths for Segmentation Evaluation: Peng et al. [92]

evaluate segmentations with multiple ground truths as human-labeled ground truths are

only a small fraction of all the possible interpretations of an image. Furthermore they

describe that the labeled ground truths set by itself might not be optimal to compare

with the input segmentation, and conclude that such evaluation leads to a certain biassed

evaluation. Their key observation lies in the local structural similarities between the

groundtruhths and the segmentation. They create a composite ground truth, which

remains similar across all ground truths in the set, created by a labeling minimizing a

potts prior. We will use this structural similarity feature in defining our composition of

energies across multiple ground truths.
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Region based and Contour Based Measures The ground truth set can be inter-

pretted as a boundary or a set of segments based on which there can be many measures

defined. Movhedi et al. [84] results show that a Contour Mapping measure based upon

contour bimorphisms between the boundaries of the object segmentations under compar-

ison were most consistent with psychovisual studies involving human evulation. Further

more this also suggests that the ground truth set need not always contain partitions

locally.

Based on the above motivations we have constructed the half(complementary) haussdorf

local energies ωG, θG as shown in figure 3.7. These energies are called precision and recall

energies, by corruption of classical usage of terms precision and recall refering to the

type I and II of errors.

3.2.6.1 Precision energy

We now focus on the classes {Ti} whose concatenation Ti t T2... t Tk generates the

partition π. The {Ti} are said to be the children of parent S. Consider the class Ti of

the partition π. The smallest dilate G⊕ ρB that covers Ti has a radius:

ωG(Ti) = inf{ρ | G⊕ ρB ⊇ Ti}. (3.20)

By taking the supremum of all ωG(S) we find the above value ρG of Rel.(3.16):

ρG =
∨
{ωG(S), S v πA}. (3.21)

This shows the soundness of ωG. But a problem arises when we want to extend it

from sets to the partial partitions D(E) of E by some law of composition between

the Ti. When the chosen energy is h-increasing, which will always be the case here,

finding optimal cuts in hierarchies amounts to compare the partition energies of parents

and children [59]. If we compose the energies of the children by supremum, then we

trivially always find ωG(π) = ωG(S), the parent. If we compose by infimum, we have

ωG(π) = ωG(S) when the ωG(Ti) all identical, and ωG(π) < ωG(S) when not. And if

we compose the energies of the sons by averaging, we obtain again ωG(π) < ωG(S).

Therefore, in all cases, we arrive to an optimal cut which can only be at the lowest level

of hierarchy H, i.e. the leaves, or at the highest one, i.e. the space E itself.

For being more informative, we can introduce a trade off based on mutual comparisons of

the energies of the sons. An easy way consists in adding a quantizer λ in the composition
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Figure 3.7: Energies ωG(S), θG(S) for each class S in a segmentation, defined w.r.t
class from a ground truth partitionin red. The composition of these energies decid the

local distance measure introduced and minimized.

by infimum, so that

ωG(π) = ωG(Ti t T2... t Tk) = inf{ωG(Ti)}+ λ. (3.22)

As this new energy is h-increasing, the optimal cut is reached in one pass by comparing

the respective energies of sons and fathers [59]. As ωG(S) = sup{ωG(Ti)}, we have

ωG(π) < ωG(S) iff λ < sup{ωG(Ti)} − inf{ωG(Ti)}.

The parent replaces its children when the latter are sufficiently “identical” , parame-

terized by complexity parameter λ. For each value of λ we thus obtain the cut which

minimizes the distances to the ground truth G, i.e. the smallest upper bound of all

cuts, as posed by Tuset et al. [94]. To give an idea of the distribution of the energies

ωG(S),ΘG(S) shown in Fig 3.8 For two different ground truths, over different partitions

from a hierarchy. As seens there are cases where the parent is as proximal as the child.

3.2.6.2 Recall energy

The number ωG(S) informs us about those points of ∂S close enough to G, but not on

those of G close to ∂S. We cannot take, here, the dual form of the ωG(S) of Rel.(3.20),

as we did before with the global Hausdorff distance. Such a dual energy would be

ω′G(S) = inf{ρ | S ⊕ ρB ⊇ G}, (3.23)
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Figure 3.8: Row 1: ωGT2(S), Row 2: θGT2(S), Row 3: ωGT7(S), Row 4: θGT7(S).
Figure shows the different half haussdorf proximity functions ω(S) and θ(S) for each
class from different partitions in a hierarchy. The two ground truhs chose are of different
scales. The gray scale value 0 corresponds to closest while 255 corresponds to farthest.
Ground truth and associated distance function on left, energy values over 6 different
partitions from the hierarchy on its right. One can already get a quick idea of what the
dynamic program would extract an a minimal cut looking at the individual values. One
can see that the scale of the ground truth partition affects the energy associated with
classes of the hierarchy of segmentatations. What’s left is to obtain a good composition.

a quantity which risks to be extremely large, for the drawing G may spread over the

whole space, whereas class S is locally implanted. Fortunately, when dealing with h-

increasing energies, one is less interested in the actual values of the energies than by

their increments between fathers and sons. Now, when a point of G is outside class S,

then its distance to S is the same as the max of the distances to the sons Ti of S:

x ∈ G ∩ Sc ⇒ d(x, S) = d(x, ∂S) =
∨
d(x, Ti) =

∨
d(x, ∂Ti), (3.24)
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so that the part of G exterior to S is not significant. For the sake of comparison, it thus

suffices to focus only on the distances involved in the covering of G ∩ S by dilations of

∂S on the one hand, and on those of ∂Ti on the other hand. Then the energy ω′G of

Rel.(3.23) has to be replaced by the more appropriate one

θG(S) = inf{ρ | S ⊕ ρB ⊇ G ∩ S}. (3.25)

When S spans all classes of a partition πA, then the supremum of all θG(S) gives the

value ρA of Rel.(3.17)

ρA =
∨
{θG(S), S v π}, (3.26)

and the (global) Hausdorff distance ρ between π and G turns out to be the double

supremum,

ρ =
∨
{{ωG(S)

∨
{θG(S)}, S v π}. (3.27)

It remains to verify that θG is h-increasing.

Proposition 3.1. Given a ground truth set G, the extension of the energy θG of

Rel.(3.25) to partial partitions by ∨ composition is h-increasing.

Proof. Let π(S1) and π′(S1) be two partial partitions of set S1, with

θG(π(S1)) =
∨
{θG(Ti), Ti v S} ≤ θG(π′(S1)) =

∨
{θG(T ′i ), T

′
i v S′1} (3.28)

Consider a partial partition π(S2), where S2 ⊆ Sc1. By taking the supremum of each

member of inequality (3.28) with
∨
{θG(Xj), Xj v S2} one does not change the sense of

the inequality, which becomes

θG(π(S1) t π(S2)) ≤ θG(π′(S1) t π(S2)), (3.29)

which achieves the proof.

Note that when G∩S = ∅, then θG(S) = Kmax, which is a large penalty set as a factor

of the number of pixels in the input image segmentation.

The energies are demonstrated in figure 3.7. to summarize ωG(S) gives the largest radius

of dilation of the ground truth set, so as to cover the contours of class S, from any set of

contours of the ground truth, while the energy θG(S) gives the largest radius of dilation

of contour of class S so as to cover contours of the ground truth parition covered by the

class S.
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Figure 3.9: Ground truth partitions, and corresponding optimal cuts, for energies
ωG, θG and for composition by sum ωG+θG. The input hierarchy is the UCM from the

Berkeley dataset, consisting of 800 level binary partition tree.

3.2.7 Composition of ωG(S) and θG(S).

The composition of the energies happens with respect to a single ground truth, or to

several ones. In the first case, one can wonder if preferable not to combine ωG and θG so

that they can provide two separated maps for the precision and for the recall. The two

associated overall values may be presented in a 2-D graphic as proposed in [9]. We can

also take for final energy either max(ωG, θG), or sum ωG+θG, they are both h-increasing.

On the example of the “peppers”, and for two different ground truths, one obtains the

results depicted in Fig.3.9

3.2.8 Composing multiple ground truth sets

In case of multiple ground truths, the usual techniques proposed in literature are additive

[9]. Formally speaking, why not? Putting ωG =
∑
ωGi yields an h-increasing energy,

hence a best cut (which is, of course different from the sum of the best cuts of the various

Gi). The implicit assumption here is that all ground truths are more or less similar.

But one can also encounter drawings Gi that focus on different regions of the scene. Then

if we take the sum, each part of the space risks to be penalized because if is far from
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Figure 3.10: Two ground truths and their union are shown, with their corresponding
optimal cuts, for the energy θG +ωG. The composition over different ground truth sets

is achieved by infimum as shown.

one drawing, at least. This was the case in case of adaptive ground truth compoisition

in Peng et al. [92].

For the situation depicted in Fig.3.10, the energies first two best cuts are given by

sup{ωG, θG} and the third one by taking inf{sup{{ωG1 , θG1}, sup{{ωG2 , θG2}}. When

point x ∈ E is farther from G1 than from G2 then the G1 energy is not taken into

account.

3.2.9 Number of Classes Constraint

The two energies ωG(S) and θG(S) of Rel. (3.25) and (3.22) have been chosen because

of their geometrical meanings, but they are far for being the only possible ones. It is

iindeed easy to build an energy which fits the features one wants to emphazise. Suppose

for example that we decide that the number of classes n of the ground truth is a cruxial

feature. Then when applying energy ωG we can condition the ascending pass which

generates the best cut to stop as soon as the number n of classes is reached. Fig. 3.11

depicts the best cuts w.r.t. ωG. when the parameter λ of Eq.(3.22) equals 0, 10, and 80,

and when the ground truth is GT7, which has 87 classes. For λ = 0, we do not obtain
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Figure 3.11: a) Leaves partition b), c) and d) Conditional λ-cuts for λ = 0, 10, & 80.

the leaves partition, because the classes with an equal energy have been clustered, as

pointed out previously. In Fig. 3.11c) and d), but not in Fig. 3.11b), one arrives to 87

classes before the end of the climbing algorithm. This explains why the two partitions

are not comparable.

3.2.10 h-increasing Coverage Measures

The measures for evaluating segmentations with ground truths categorize into two types:

Region based and Boundary based. The global purpose of these measures, is to be able

to evaluate the image segmentation algorithms w.r.t certain metrics. Here we use one of

the region based measures to extract an best possible segmentation from a hierarchy of

segmentations. One of the common measures is the coverage measure [10]. The coverage

criterion is not h-increasing due the division by the union of regions. This changes the

optimality and we can’t ensure a local optimum that is part of the global optima. One

can now rewrite it (eqn. (3.12)) in an h-increasing energy form as follows:

ω(S) = N −
∑
j∈[1,n]

|S ∩Gj |+ λn (3.30)

where N is number of pixels in the image or partition, Gj are the different connected

components of the ground truth partition G, and n is the total number of connected

components in the ground truth partial partition of support S.

ω(S) = (N −
∑
j∈[1,n]

|S ∩Gj |) + λn
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The sum term in the functional refers to the number of pixels that correspond between

the ground truth and the class. This is should be maximum, while the difference N −∑
j |S ∩Gj | should be minimum.

The second term corresponds to the number of connected components of ground truth

in each class S. Minimizing this value gives the largest partition that fits G.

This equation can be replaced by

ω(S) = N −
∑
j∈[1,n]

|S ∩Gj |+ λ
∑
j∈[1,n]

|∂G(x)|x∈Gj∩S

3.2.11 Local linear dissimilarity

Another variant consists in replacing the supremum that appears in Rel.(3.19) by a Lp

sum, which gives less importance to the farthest zones. A similar approach has been

successfully used by L. Gorelick et Al. [44] in regional line-search cuts. Among the Lp

integrals, the one which weakens the most the weights of the farthest zones is obtained

for p = 1. Therefore we take for precision energy ω̃G(S) the integral of distance function

g(x) of G along the contour ∂S and for recall energy θ̃G(S) the integral of the distance

function g(x, ∂S) of S on G ∩ S:

ω̃G(S) =
1

∂S

∫
∂S
g(x)dx θ̃G(S) =

1

G ∩ S

∫
G∩S

g(x, ∂S)dx (3.31)

The two functionals ω̃G and θ̃G are extended from classes to partial partitions by addi-

tion, since they both involve integrals, and one easily checks that the two energies are

h-increasing. The higher ω̃G(S), (resp.θ̃G(S)), the farther S is from G (resp. G is from

S). In case of a ground truth given by k drawings, one just sums up the k energies ω̃G

and θ̃G.

3.2.12 Global Precision-Recall similarity integrals

Following from the local measures in (3.31) which are integrals of the distance function

associated with each class, we propose here a global similarity measures for a hierarchy.

Two global measures of precision and recall for a given hierarchy H of segmentations

with respect to an input ground truth partition G. The measure now is not between 2

partitions any more and deals with the global similarity between hierarchies of partitions

H and a single partition G. The representative functions we are going to use for the

global measures are: s the saliency and g the distance function, the set Si saliency map
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threshold at an index i.

P =
1∑
i=0

i

N

∫
x∈ε(Si)(1− g(x)).Si(x)dx

|Si|
R =

1∑
i=0

i

N

∫
x∈G(1− gSi(x))dx

|G|
(3.32)

The integral calculates the similarity between partition Si produced by thresholding the

saliency s at i and the ground truth partition G by integrating the inverse distance

function 1− g under the binary function Si. Also the sense of the hierarchy is such that

si+1 ⊂ si which represents that partition at a higher level in the hierarchy has fewer

contours than the one below to respect the inclusion order. Each integral is weighted by

the relative rank of the partition within the hierarchy H. This is done by weight it by

ratio of threshold index i and the total number of levels in the hierarchy N as shown in

equation(3.32).

Similarly a global precision value for the contours of the partitions in the hierarchy can

be calculated by integrating the distance functions gSi of partition Si under the ground

truth partition G. These integrals are normalized with respect to each image support

by dividing by the size of the image.

3.2.13 Proximity between hierarchies

The integrals in equation (3.32) is between a partition G (ground truth) and a hierarchy

H. The same can be extended to measure the proximities between two hierarchies of

partitions. Given two hierarchies of partitions, H1, H2, with N and M number of levels,

and partitions indexed by i and j respectively,

φ12 =
∑

j∈[1,M ]

∑
i∈[1,N ]

∫
x∈ε(πi)(1− gπj (x)).πi(x)dx

|πi|
(3.33a)

φ21 =
∑

i∈[1,N ]

∑
j∈[1,M ]

∫
x∈ε(πj)(1− gπi(x)).πj(x)dx

|πj |
(3.33b)

where gπi is the distance function of the partition πi.

The measure lacks the similarity measures across partitions which are not horizontal

cuts, but generally cuts from the two hierarchies. This becomes again a combinatorial

problem. The refinement of cuts πi from an input hierarchy H1 would have a value of the

distance function gπj which decreases on average till the point where the two partitions

nearly fit and the integral starts increasing again.
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3.2.14 Ground truth energies to Saliency functions

Here we shortly describes the motivation to leave the energetic lattice and moves to a

lattice defined purely on the finest partition of the space. We have seen in the formulation

of the local Hausdorff energies that they consisted in measuring the proximity between

the contours of the class of the hierarchy and the ground truth partition.

This requirement of local energies, when changed to an global assignment of a proximity

measure over all the contours of the segmentations in HOP, results in a way to transform

a HOP, by reordering its contours based on its proximity to a ground truth. This was

the starting point for the chapter 4 on saliency functions. Furthermore one can examine

such a proximity measure in the two Hausdorff senses, that is, distance from partition in

HOP to ground truth, and vice versa. Interestingly here, we deviated from the classical

saliency function, [32, 88], which consists in weighting of contours of the minima by their

extinction function [116], in other words the result of defining a flooding.

We will see later that a proximity measure, along with a leaves partition is sufficient

to define a lattice, and thus produce a saliency function. For a deeper understand we

redirect the reader to the chapter 4.

3.3 Summary

In summary, one must note that we are demonstrating a framework to perform con-

strained optimization on hierarchies and braids, using various energies. The image

segmentation problem by itself requires another step, which is to determine the optimal

scale parameter. This can be done in a variety of methods.

Chapter contribution summary

I Demonstration of various h-increasing energies to minimize Mumford-Shah

functional, texture energies, which enforce different constraints.

I Half Hausdorff energies to calculate proximal cut from hierarchy w.r.t Ground

truth, and formulation of the proximity in a constrained optimization frame-

work.

I A global measure which distinguishes between a set of hierarchies of segmen-

tations given a set of GT partitions.
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Chapter 4

Hierarchies and Saliency function

Publications Associated with Chapter

• [58] Fusions of ground truths and of hierarchies of segmentations (PRL 2014).

• [60] Scale space operators on hierarchies of segmentations (SSVM 2013).

In the previous chapters, the cuts from a BOP B have been our solution space, and

various types of increasing energies were optimized to produce an optimal cuts, and

further an optimal hierarchy whose cuts are ordered based on increasing energies. We

leave the space braids of partition, and concentrate now on a particular subfamily of the

hierarchies, which is the represented by saliency functions. Here one can renounce the

lattice over the support of classes and purely work on the contours of partitions in the

hierarchy. Following the decision to work on contours of the partitions, we will restrict

ourselves to hierarchies represented by a saliency functions in R2.

A saliency function is a numerical representation of a hierarchy, which was first in-

troduced by [88] to represent the scale of disappearance of watershed contours. More

generally saliency function is a positive function defined on the frontiers of the classes of

a partition π0.The function value on a contour represents the altitude at up to which it

separates two components, beyond this value, the components fuse into a single compo-

nent. Thus the saliency characterizes a hierarchy which has the partition π0 for leaves.

In the Euclidean plane a simple method to model π0 is to consider its frontiers as Jordan

curves.

With this numerical representation of the hierarchy, we formalize the work in [60], by

introducing an order on the contours of the partitions thus avoiding the combinatorial

problem of choosing an optimal closest cut. We define the partition of input space to

be a finite set of Jordan curves partitioning R2. Further define a lattice of such Jordan
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curves which when associated with a numerical function produces a new ordering and

thus a hierarchy. We treat the problem of ground truth evaluation of hierarchies of seg-

mentations. More precisely we use the ground truth distance function to order contours

in the hierarchy reflecting the proximity to ground truth. We further demonstrate with

other point-wise function to reorder contours, resulting in a new transformed saliency

function.

First in section 4.3 we describe the necessary topological framework, and explicit the

lattice of Jordan curves. Section 4.3 gives the theory, Section 4.5 and 4.6 describes a

fusion between the saliency and external functions, which reorders the initial hierarchy.

Section 4.7 demonstrates such a reordering based on the proximity to a ground truth

partition. Then the composition of two hierarchies is obtained by using a distance be-

tween them. Following which one studies a measure that demonstrates how the distance

function produces structural changes in the transformed or reordered hierarchy.

Saliency function: a numerical representation of partition hierarchy: We re-

visit the saliency function, first introduced as a representation of the hierarchy. They

have been popularized as Ultrametric Contour Map(UCM) [10] The hierarchy and thus

its saliency function, can be generated in many ways, most frequently by watershed

of floodings [10, 32, 79], or again they can be regular hierarchies such as, quad-trees,

oct-trees, all of which can be represented by the saliency function.

4.1 Ground truth Evaluation of Segmentation Hierarchies

In section 3.2.1 we have seen hierarchies of segmentations have been evaluated by expert

annotated ground truths by various local, regional and global measures, over classes

regions and partitions [10, 94]. This was formulated as an energy using the Hausdorff

distance between contours of ground truth and classes in the hierarchy [61], to extracts

partitions from a given hierarchy, closest to the ground truth. Until here we have used

the energetic lattice from the lattice based optimization framework [59] in chapter 1.

4.1.1 Contour proximity

There has been substantial work on comparing the contours of a ground truth set and

image segmentation, for the purpose of evaluating the distance between them. One can

find the use of mainly three types measures between the classes of ground truth and

segmentation: Region measures (Region Intersection Measure/Coverage measure) [84],

Boundary-based Measures [55] which use the Hausdorff distance between the contours.
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Figure 4.1: Saliency Function example: First image is an input image from Berkeley
data base. Second image is the corresponding Ultrametric Contour Map(UCM) which
represents a hierarchy of partitions. Third image shows the corresponding altitude
map for the UCM. Here we see that each arc in the saliency function separates different
components at different altitudes. This third image is oriented 180 degrees off to better

render the details.

There are also certain mixed regional measures, which weight the false positives and

negatives differently. The Hausdorff distance calculates the supremum of distance dis-

tribution between two classes, thus for contours of any pair of classes, having the same

worst case distance, will be evaluated irrespective of other distances.

In such a context we will consider only contour proximity information. This can be

sufficient to extract a set of partitions from a given hierarchy of segmentations. No

explicit measure or energy on the classes is required to do so. In this line of work [60]

studies how the distance function of the ground truth can be used to order contours of

the hierarchy of partitions, so as to be able to pick the partition closest to the ground

truth, and the next closest until one completely transforms the hierarchy.
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Figure 4.2: Examples of Jordan Curves. The Jordan curve tessellates the space, with
one bounded interior component or face F and an unbounded exterior component S

4.2 Jordan Curves

We can adopt either the framework of the Euclidean plane R2, or that of an abstract

graph, or that again of a planar graph. We will work on the Euclidean plane in this

paper, and further discuss its significance after establishing the main results. The critical

feature we need to model is, the distinction between inside and outside of a contour.

This is exactly what is achieved by Jordan curves defined in the Euclidean plane R2

equipped with the topology of Euclidean distance.

Here we present the assumptions of our model:

1. The working space is Euclidean plane R2,

2. R2 is partitioned into faces and contours by Jordan curves,

3. There exists a finest partition with a finite number of faces, called leaves.

This last axiom permits to construct a lattice structure and thus hierarchies.

We now define what a Jordan Curve and how it has been used to describe image seg-

mentation or partitions.

Theorem 4.1. A Jordan curve C in R2 is the image of an injective (i.e. without self-

intersection points) continuous map of the unit circle into the plane. According to a

famous theorem due to C. Jordan, the complement R2 \ C consists of exactly two open

connected components, the first one, called face F is bounded, and the other, called

background S, which is not. They are homeomorphic to the inside and the outside of a

disk respectively.

One classically calls a tessellation any partitioning of a topological space into open

classes, and classes formed by their frontiers [101]. The partition of R2 into three classes

{C,F, S} by a Jordan curve is thus a tessellation of R2.
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Figure 4.3: One can suppress the contour in the interior of region F1, while no
increasing the energy ω(π) of the partition by F1, F2.

4.2.1 Normal Segmentations

Here we must interject that the class of hierarchies of segmentations produced here are

a subclass of the general hierarchy of partitions with no topological constraint. The

constraint requires that two classes in the partition can’t be merged if they are not

connected an arc is removed from the partition. Thus hierarchies of segmentations

which label the classes are a more general class of hierarchies. Here we will use the

definition of a Normal Segmentation introduced by Morel et al. in [82] to formalize this:

Definition 4.2. A segmentation π is called normal if every sub-segmentation π′ of π

verifies ω(π′) > ω(π)

Here the normality of a segmentation refers to the simplification of a segmentation such

that:

• the merging of any two classes necessarily produces a suppression of atleast one

Jordan Curve, thus causing a reduction in the energy associated with the partition

(in the Mumford-Shah sense)

• the suppression of a Jordan curve produces a merging of 2 classes.

Morel et al. [64] further states to check computationally if the segmentation produced

is normal, aside the necessity for finite number of classes, one requires the classes have

no internal boundaries. That is if each Jordan Curve separates two different regions.

This property ensures finite classes remain at the end of the operation. This is termed

by Morel et al as an 1-normal segmentation. An example in figure 4.3 from Morel et al

[82] is reproduced.
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4.2.2 Describing Segmentation with Jordan Curves

The image segmentation process results in a segmentation which is formally defined as

a partition of the input space. Many authors have used the concept of Jordan Curves

to represent the segmentation of images. To represent the Ultrametric Contour Maps

(UCM) [8], Arbelaez refers to a segmentation K as a finite set of rectifiable Jordan

curves, which are called the contours of K. A finite set of rectifiable Jordan Curves is

said form a normal segmentation when the removal of any number of curves increases

the energy defined the segmentation. One similarly finds the definition of 1−Normal,
2−Normal segmentations by Morel et al. [64, 82]. Furthermore Jordan curves can be

used to describe the contours of components(level sets) of a continuous functions [81].

Jordan curves may be extremely irregular (e.g. the fractal Von Koch snowflake), and

even have of non measurable lengths. Measurable Jordan curves have been used in image

processing by [81, 82] for functionals whose computations involve length and perimeter

as seen in the case of Mumford Shah Functional. But this restriction is not pertinent

here, since we do not measure lengths.

4.3 Jordan Nets

Here we construct a lattice structure that uses a finite set of Jordan curves to create a

partition of R2.

4.3.1 Definitions

Definition 4.3. A Jordan net, or J-net N , is defined as a set of Jordan curves, which

delineate a finite number of open insides. In addition, the empty set ∅ is also,by defini-

tion, a J-net.

N is thus a set of contours Ci that delimits the bounded faces F1, F2, ..., Fp, p < ∞,

plus the unbounded background S. Both faces and background are open. J-nets may

comprise several connected components and faces included in each other. Note that the

number of primitive Jordan curves one can extract from N does not reduce to the Ci.

In Figure 4.4 for example, one can take as primitive J-net curves, the two half circles

which share a diameter, while one can also take, just one of them plus the complete disc.

The faces we consider are the complement of the Jordan net N . One can observe of

course that the definition of the Jordan net basically resembles that of a segmentation

[82]. According to Jordan theorem, the plane R2 is partitioned by the union of N,S,

and {Fi}.
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4.3.2 Ordering and lattice of J-nets

Though the space of all J-nets of R2 is ordered by inclusion, it does not generate a lattice

because it is not upper-bounded, and anyway it is broad for our goal: in a circular crown

of radius r > 0, one can draw an uncountable number of Jordan curves. We will restrict

this space by considering only the J-nets included in a finite net N0, whose associated

faces define the leaves. An example is given by the faces of the tessellation in figure 4.5.

Two families derive from N0: Firstly, the power set P(N0), constituted by all sets whose

points belong to N0. Secondly, the family N (N0) of all J-nets included in N0. We

have N (N0) ⊆ P(N0). Both sets P(N0) and N (N0) comprise the empty set ∅ and are

ordered by inclusion. P(N0), as a power set, is a Boolean lattice. But unlike P(N0),

the family N (N0) is not complemented: if N ∈ N (N0) the complement N0\N may have

Jordan arcs which are not looped. However, the following property holds:

Proposition 4.4. The set N (N0) of all J-nets included in the base N0 forms a lattice

with N0 and ∅ as universal bounds. The supremum of N,N ′ ∈ N (N0) is the union

N ∪N ′, and the infimum is the union of all Jordan curves common to N and N ′(empty

set included).

Proof. N (N0) admits a greatest element, namely N0. Let N,N ′ ∈ N (N0). The union

N ∪N ′, composed of Jordan curves belonging to either N or N ′, is therefore an element

of N (N0). Concerning the infimum, the largest lower bound of N and N ′ is obtained

by the union of all Jordan curves common to N and N ′. This family exists, i.e. is not

empty, since it contains the empty set.

This approach focuses on contours, but the duality in R2 provides the inverse ordering

for the faces. If N ⊆ N ′, then

∪i{Fi} ∪ S = R2\N ⊇ R2\N ′ = ∪i{F ′i} ∪ S′

Figure 4.4: An elementary Jordan net N0, A set X of arcs and Jordan curves, and
their net openings γ(X). It is important to note that the number of connected com-
ponents of white pixels don’t change after a net opening |γ(X)|CC = |X|CC . γ(X)

removes two types of arcs: open arcs and arcs which are not normal [64].
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Figure 4.5: Initial Image 25098 from Berkeley database, leaves given by lowest(finest
partition) threshold of Ultrametric contour map(UCM). The leaves here represents the

initial finite net N0.

Figure 4.6: Initial Image 239096 from Berkeley database, Saliency function s: Ul-
trametric contour map(UCM), Ground truth partition G, Inverted distance function
g. The inputs here we consider are the saliency function s and the inverted distance

function g.

The faces increase when contours are removed. Proposition 4.4 suggests to associate an

opening with the N0-infimum.

Corollary 4.5. Given X ∈ P(N0) the union γ(X) of Jordan curves C contained in X

γ(X) = ∪{C ⊆ X,C ∈ N (N0)} (4.1)

is an opening on P(N0), called net opening, whose set of invariants is N (N0). γ(X)

provides the largest J-net included in X. By duality in R2, if Y = R2 \X, the closing

ϕ(Y ) = R2 \ γ(X) provides the largest classes having γ(X) as J-net contours.

In particular the N0-infimum between N,N ′ ∈ N (N0) is γ(N ∩ N ′). The opening

γ(X) simplifies X by suppressing all points which are not involved in a Jordan contour

included in X [60]. Figure 4.4 illustrates these changes.
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4.3.3 Net Opening in Literature

The net opening operator γ is not a new notion. It appears already in 1982 in [101]

under the name of pruning, where it serves indeed to cut branches in digital skeletons.

One can also find it in [68] for discrete classifications by ultrametric. A similar line of

thoughts is developed for characterizing the types of edges in topological watersheds [16]

by Cousty et al. [31], which produces watershed cuts, that partition the vertex set. In

[33] a local variant is proposed to model flooding in digital watersheds. In the same

context, it reappears in [32], where each pixel is assigned as nodes set, and the edges is

obtained as a function of the gradient between two pixels. The dynamic, surface, volume

based saliencies are calculated using such edge weight values. The Minimum spanning

tree is applied to the edge set to obtain the hierarchies of segmentations on the vertex

set.

Further in the framework of graphs, Haximusa et al. [52] perform hierarchical image

segmentation by obtaining the infimum of costs over edges separating two components

with the costs defined as the largest internal contrast in the fused component. This

operator is posed as edge contraction on the Region adjacency graph(RAG), which

removes an edge from a graph while merging the two vertices it previously connected.

There has also been work in the domain of edge and vertex based labeling studied in the

well known Multi-cut problem [56]. The multi-cut is a NP hard combinatorial problem

that determines the edges such that the sum of weights of cut-set is minimal. The paper

[56] then proposes to optimize over the set of all separating boundaries while minimizing

particular energy functions. Applications here are seen in the domain of closed boundary

segmentation problems [5]. While the multi-cuts framework is flexible we are looking

here for a simpler framework utilizing lattice (sup-inf) based optimization to extract

closed contours from a predetermined hierarchy of segmentations.

Formulating γ as an Opening: By working on Jordan Curves, we can interpret this as

an indifference in operating on edges and vertices on graphs, is one of the key motivations

which these cited approaches miss. Furthermore the by defining the underlying lattice

N (N0), whose net opening operator γ expresses the infimum, one reaches a unique

infimum by nature of the lattice, and is also reason why the net-opening γ works so

well. Consequently this facilitates the ability to state theorems 4.6 and 4.9, and more

importantly to compose several inputs, to introduce the filter γϕ, to provide closest

bounds, etc. The opening γ results in the largest saliency function under g, which

corresponds to an optimum. This is in contrast to the multi-cut criterion, where one

minimizes the sum of the costs of the edge cutset.
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4.4 Watershed transformation and Saliency function

This section which is mainly bibliographic revisits the saliency function from its devel-

opment in the transformation.

4.4.1 Watershed

The watershed transformation has been a subject of intense study in literature. The

transformation was introduced in the continuous domain by Beucher and Lantuejoul

[19], followed by others, including Najman et al. [87], and also in the discrete domain

by Vicent et al. [16, 30, 122]. In the continuous domain there have been problems in

describing the watershed of a continuous function, since the watershed line produced

may be thick, with nonzero area. It may also have so-called barbs which are branches of

zero area with an end point [87]. There has been an energy minimization, Water-snakes,

based calculation of the continuous watershed for functions that are derivable [89].

The watershed transform in its approach, treats the input functions as a relief. The

function used to determine the presence of edges, usually considered is the morpho-

logical gradient. When the function is seen as a mountain landscape, and one floods

topographically the valleys, region boundaries are determined as watershed lines [77].

This analogy is also well described by the drop of water principle: a drop of water falling

on a topographic surface follows a descending path and eventually reaches a minimum.

The watershed may be thought of as the separating lines of the domain of attraction of

drops of water [31]. The above discussion demonstrates that the watershed transforma-

tion has many ways of being defined. For example, based on the catchement basins of its

minima [77], the watershed contour separating components [31]. In addition, one finds

continuous or discrete definitions. There are also many ways of handling cases when one

finds a drop on a saddle point (plateaus).

In such cases one requires a distance function, which has been addressed in many ways,

in literature, but can be categorized into the following:

1. General Non-Smooth Geodesic Distance: [77], Surfacial mean curvature based

watersheds [96].

2. Smooth Geodesic Distance: [89], which uses a geodesic distance weighted by the

norm of the gradient of the function to formulate the watershed calculation as a

minmization.
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3. Morphological gradient weighted distance functions: The waterfall uses a simplified

gradient resulting from the iterative mosaicking of the image. [18, 79], A topolog-

ical watershed of a function, preserves the gradient between its regional minima.

The gradient across the regional minima is given by the minimal altitude at which

the minima basins recombine [16, 31]. Operations of extending the basins/minima

by “raisings” has been suggested in [33] using again the gradient function. One can

also find work on using the area, volume and dynamic of connected components

of level sets of the function [32].

4. Regularized gradient function: [116] uses flooding by viscous liquid to simulate the

regularization of the gradient to avoid over-segmentation problems. [120] uses a

diffusion scheme on the RGB gradient vector field, to simplify the gradient.

In all these cases its important to note that one assumes a finite set of local minima of

the input function.

4.4.1.1 Saliency functions

Saliency functions have been firstly used to represent the hierarchy of catchment basins,

produced when one employs hierarchical watershed methods. This was first introduced

in [88] where Najman et al. used the geodesic distance to produce sequence pairwise

floodings that recombined minima based on the geodesic distance between pair of points

belonging to these minima. The minima of the function are flooded as a function of their

extinction values [117], which orders the attributes [32] of the components of the levels

sets of a function, for example the area, volume and dynamic, to produce a hierarchy of

partitions, and the corresponding saliency function.

Further Najman et al. [86] suggests an equivalence between the set of all saliencies

possible and an equivalent ultrametric watershed. It is of interest to note that the

watershed depends on the gradient function which is calculated over the original image.

The Watershed clearly combines the two processes: calculating a dissimilarity function

(usually a gradient), and calculating the partition separating the minima of the function

using its gradient. We distinguish the two processes and define in our axioms:

• A finite set of Jordan nets provides model of segmentation [82]. This states that

our starting point is the partition itself. The watershed is a more complicated

problem, which involves various questions of thick contours and barbs, that are

avoided by having a Jordan curve. The goal in using the Jordan nets is simply to

define a hierarchy of partitions bounded under a numerical function.
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Figure 4.7: The figure demonstrates how the image I produces a meaningful gradient
function in the xy directions ∇xI ∪∇xI, using the image values. The label image L on
the other hand does not depend on the actual values in the gradient (∇xL depends on
the labeling L which can be arbitary) but just the existence of the non-zero gradient

value. This can be seen as a indicator function of the gradient function 1(∇L).

• In our study, the numerical function that decides the recombination/flooding of

the components of the partition is no more dependent on the gradient of a func-

tion. This broadens the choice of the gradient based ordering required to generate

watershed based saliency functions. It can be any function. In our case, it corre-

sponds to the proximity of segmentation contours to a ground truth set. This is

demonstrated in figure 4.7.

A hierarchical partition of the space, one can be determined in multiple ways based on

the problem at hand (region merging, graph based hierarchies, waterfall strategies).

The critical difference in the formulation of a saliency function as numerical function

on the Jordan net, is the use of a function which is independent of the function being

partitioned (like Luminance of the image). In this case it depends on an external con-

straint: the proximity between the contours of a ground truth set and a partition. This

is disjunct from the properties/attributes of the components or classes in the hierarchy

of partitions.

Finally, the two methods watersheds, net-opening, are close in the type of operations

they perform on arcs, but are operations really for two different cases. Watershed are

more involved operations that involve gradient calculation which result in a partition of

the space. While the net-opening simply tries to define a family of saliency functions

that can be defined using a primitive partition under a given function.

4.5 Fusion of hierarchies and functions

We now get to the heart of the matter. We would like to distribute weights g : R2 → R
on the points of the basic J-net N0 so that one could obtain larger and larger tessellations
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Figure 4.8: Input function g on a simple toy Jordan net, The net opening γ(g) and
their level sets.

Figure 4.9: Complement of input function g′ = max(g) + 1 − g, Intermediate result
showing the opening of inverted function γ(g′), and finally for the pseudo closing we
use another iteration of the net opening: φ(g) = γ(max(γ(g′) + 1 − γ(g′), with level
sets of g′ and φ(g). The opening of the complement is a closing in the space of arcs but

not that of the Jordan nets.

as the threshold increases. The cross section Xt(g) at level t is given by

Xt(g) = {x | x ∈ N0, g(x) ≥ t} (4.2)

has no special reason to be a J-net. Breaches can appear in some curves of N0. But γ(Xt)

has no breach and is the largest J-net smaller than Xt. Moreover, as γ is increasing, the

successive J-nets transforms are nested:

t ≥ t′ ⇒ Xt ⊆ X ′t ⇒ γ(Xt) ⊆ γ(X ′t)

This orients us towards the unique numerical version of the binary opening γ acting on

level sets Xt, denoted by the same symbol γ (γ(X) for sets and γ(g) for functions). It

is given by

γ(g)(x) =
∨
{t > 0 | x ∈ γ[Xt(g)]}

or, equivalently by the level sets

X(γ(g), t) =
⋂
s<t

γ[Xs(g)] (4.3)
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The successive thresholds of γ(g) delineate increasing tessellations of R2, i.e. by defini-

tion, a hierarchy denoted by H[γ(g)]. Though t is defined on R+, the number of level

sets of γ(g) which are different is finite, just as the number of Jordan curves in N0 is.

The Jordan net opening γ(g) generates a saliency on N0, in L. Najman and M. Schmitt’s

sense [88], i.e. a numerical function whose thresholds are always closed contours. More

precisely we can state the following:

Theorem 4.6. Let F be the family of the positive bounded numerical functions on R2,

let N0 be a basic J-net, and let γ be the associated numerical net opening . Given g ∈ F ,

γ(g) is piecewise constant on N0 and provides the greatest saliency smaller than g on N0.

The pair [N0, γ(g)] characterizes a finite hierarchy H[N0, γ(g)]. The image I = γ(F) of

F under the opening γ is exactly the family of all positive and bounded saliencies on N0.

Proof. Consider a Jordan curve Ci ⊆ N0. Denote by ti the supremum of the t such that

the contour Ci is not damaged, i.e.

ti = sup{t | Ci = Ci ∩Xt(g)} (4.4)

For t < ti the opening γ[Xt(g)] preserves integrally the internal face Fi of Ci, which

is thus also preserved for t = ti, according equation (4.3). For t > ti a breach is

made in Ci ∩Xt(g) towards some face Fj adjacent to Fi and γ[Xt(g)] makes both faces

merge in a larger one, whose contour is included in N0. The set difference N0(ti) =

Ci\∪t>ti γ[Xt(g)]indicates the points of Ci that vanish above level t, or equivalently, the

points of N0 where γ(g) = ti. The net opening γ(g) is thus piecewise constant at values

ti whose cardinal is finite, and its thresholds are closed contours. It is thus a saliency,

and the two data of N0 and γ(g) characterize the hierarchy H[N0, γ(g)]. As each saliency

γ(g) ∈ F , the image I = γ(F) provides all saliencies. Besides, the transform γ(g) is

the greatest saliency smaller than g since, for any saliency s1 ≤ g ∈ F , we have by

increasingness of γ, that s1 = γ(s1) ≤ γ(g) ≤ g.

Corollary 4.7. The family S of all saliency functions s on N0 is a lattice for the point-

wise numerical ordering. The supremum of a finite family {si, 1 ≤ i ≤ I} is ∨si, and

the infimum is γ(∧si).

A saliency function s on Jordan netN0 is equivalent to a parametrized hierarchyH(N0, s)

since the threshold

N0(t) = {C,C ⊆ N0, s(C) ≥ t}
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generates a Jordan net at level t and since

t′ ≥ t⇒ N0(t′) ⊆ N0(t)

Moreover this hierarchyH(N0, s) is parametrized in the sense that the sequence {N0(t), t ≥
0}, of successive contours is not only ordered, but labeled by the level t of appearance

of each N0(t). Conversely it is clear that the successive thresholds of a parametrized

hierarchy H(N0, s) induce a saliency function on N0 by Eq(4.4).

The equivalence between saliency functions and parametrized hierarchies leads to the

following result:

Corollary 4.8. The lattice S of the saliency functions provides a lattice structure on

the set H of all parametrized hierarchies on N0, where for H(s1), H(s2) ∈ H :

s1 ≤ s2 ⇔ H(s1) ≤ H(s2);

H(s1 ∨ s2) = H(s1) ∨H(s2);

H(γ(s1 ∧ s2)) = H(s1) ∧H(s2)

4.6 Composing hierarchies and numerical functions

The lattice structure of N (N0) allows us to combine various bounds by suprema and

infima. We can ask the following questions on the compositions of a saliency and any

general family of functions, and in what type of problems would different compositions

make sense.

1. Given that the base Jordan net N0 is already the support of a predetermined finite

hierarchy H with saliency s. When a non-negative function g1 on R2 is introduced,

how to compose it with s?

2. When in turn a second function, g2, acts on the saliency s1 resulting of g1, how

the two effects are composed?

We will successively take up these questions by openings, closings and thickenings.

4.6.1 Lower bounds by opening

Theorem 4.6 allows us to combine a saliency s with a function g. The following nice

properties are indeed direct consequences of this theorem:
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Figure 4.10: Lack of upper bounds by closing.

Theorem 4.9. Let H be a finite hierarchy on N0, of saliency s, and let g1 and g2 be

two non negative functions on R2, then:

(i) γ(s∨ g1) (resp. γ(s∧ g1)) is the largest saliency smaller than s∨ g1 (resp. s∧ g1),

(ii) if g1 is itself a saliency on N0, then the supremum g1 ∨ s = γ(g1 ∨ s) is a saliency,

(iii) γ(g1) ∨ γ(g2) is the smallest saliency larger than or equal to γ(g1) and γ(g2),

(iv) if g1 ~ g2 denotes an operation from F × F → F , such as +,−,×,÷,∨,or ∧, then

γ(g1 ~ g2) is the largest saliency smaller than g1 ~ g2, and γ(g1 ∨ g2) ≤ γ(g1 + g2).

In all cases the resulting saliency is unique.

4.6.2 Lack of upper bounds by closing

Is it possible to reach similar bounds, but from above, by means of closings? We saw that

the lattice N (N0) is not preserved under complement. Thus it is direct but interesting

observation that the complement saliency function g given by g′ = max(g) + 1− g need

not be a saliency function by itself.

Consequently, the closing ϕ, dual of the binary net opening γ for the complement on

N0, maps P(N0) on itself, but not on N (N0), as shown by Figure 4.10. The asymmetry

extends, of course, to the numerical case, and there is no closest closing because the

infimum of saliencies may not be a saliency. The closing ϕ(g) in figure 4.9 does not

define a hierarchy, but composition product γϕ(g) in figure 4.12 does.

The saliency γϕ(g), greater than the largest saliency lower-bound [γ(g) ≤ γϕ(g)] and

smaller than the upper-bound ϕ(g) is indeed a good interpolation of saliency function

from g.

4.6.3 Upper bound by Geodesic Reconstruction

The net opening γ(g) can be interpreted as a geodesic reconstruction of function g under

the marker N0, J-net. The dual operation, which consist in a geodesic reconstruction
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Figure 4.11: Dual Closing: The thickening τ is not increasing. g and g′ are binary
or two level saliency functions. We have τ(g) ≥ τ(g′) though g ≤ g′.

Figure 4.12: a) filter γϕ(g), i.e. the closest saliency below ϕ(g), b) thickening τ(g).

from above(the complement), provides a saliency function which upper bounds g, called

netting τ . For constructing it, we start from level set Xt(g) of N0 weighted by a function

g as described in equation 4.4:

• if Xt(g), as defined by Eq (4.2), is not a J-net, replace it by the leaves N0, which

is a J-net,

• if not, leave Xt(g) unchanged.

In both cases, continue with X2(g), which is now compared to the transform of X1(g).

When the top of the hierarchy is reached, thus in one pass, then the tessellations at all

levels are larger than initially and increase with the level, i.e. τ(g) is a saliency, and

τ(g) ≥ g, and this operation is idempotent: τ [τ(g)] = τ(g). However the operation τ is

not increasing (see Figure 4.11), and thus belongs to the class of thickening [101]. Figure

4.12 shows the thickening of function g in figure 4.8. Though τ(g) is an upper-bound of

g, but not necessarily the closest one, which may or may not exist.

4.6.4 Discussion on Graph based methods

We would like to conclude, firstly, by coming back to three arguments reasons that

motivated the Euclidean framework:

1. The only operands used in both theory and experiments are points, Jordan loops,

and their interiors, but never edges. The principle of parsimony urged to avoid
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the useless distinction between vertices and edges, which would have automatically

been introduced by a graph approach. However, our results could also be obtained,

probably, in a discrete framework which distinguishes vertices and edges.

2. Jordan nets were weighted with functions g (e.g. distance functions), so that each

point, in each arc of the net was given a weight. In case of a finite graph the

resolution of function g is restricted to a single value for each edge. But there is no

particular reason to impose this quantization to the function g, whose resolution

can be much finer.

3. Distances in the physical world are isotropic, and we need a mathematical repre-

sentation to preserve it. Now, an abstract graph ignores isotropy, except one that

imposes it with its metric. The planar graphs are better: embedded in R2, they

allow us to build distance functions by emulating the discs of R2. It is why we used

this formulation in the preliminary version of the present study. [45] studies how

image segmentation algorithms on graph often have to decide optimal connectivity

and topology.

4.7 Algorithm and Experiments

4.7.1 Net Opening by up-sampling and down-sampling

Figure 4.13a) represents the leaves partition whose components are labeled 2,3, and 4.

This partition is up-sampled by 2 according a dilation by a 2× 2 square. This results in

Figure 4.13b). The basic J-net separating the leaves is obtained by the support of the

gradient of image 4.13b) (still with the same origin), and is depicted in Figure 4.13c).

This appears only in the even rows and columns. Introduce now a weighting function

g. Figure 4.13d) depicts the g weights on the gradient support. The cross section Xt(g)

for t = 2 is indicated in Figure 4.13e). It opens a breach between the label 2 and 4

which merge in a unique component, of label 4 in Figure 4.13f). By down-sampling, i.e.

by removing even rows and columns in Fig. 4.13f), we return to initial space in Figure

4.13g), where the two labels 4 and 2 are clustered into a single label, which is exactly the

level t = 2 of the hierarchy. This results in the closing of classes as defined in corollary

4.5.

With respect to the up-sampling in the discrete spaces, the discretized image fits cor-

rectly with its euclidean version, if we admit two assumptions. Firstly no features is

smaller than the elementary square grid, and secondly, there is at most one feature

change between two neighbouring pixels. The double resolution is nothing but a mean
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Figure 4.13: Toy example showing down-sampling and the different stages of oper-
ation to achieve the net opening. One important different w.r.t [86] is that here we
have boundary operator that simply calculates the non-zero gradient contours, since
the labeling of the components does not produce an ordering dependent on the gradient
of the image, and furthermore can be arbitrary. This double resolution to separate cells
in discrete topology is the well known Khalimsky topology [76], further one can find

the Khalimsky’s digital jordan curve theorem in by Kiselman [63].

Figure 4.14: Inverse distance function gGT4 = 1 − d4(GT4), Transformed saliency
γ(s+ gGT4), Point distance function gpoint, Transformed saliency γ(s+ gpoint).

for exploiting these assumptions. It fits well with the Euclidean Jordan net approach,

which divide the space into faces and J-net, since it localizes the J-net in the union of

the even rows and columns of the up-sampled image.

4.7.2 Fusion of ground truth and hierarchy

Conventionally the ground truth information is intended to assess the quality of a seg-

mentation, here a hierarchy H of segmentations. Here in the place of evaluating the

hierarchy, we analyse it with respect to the given ground truth. The saliency trans-

formation by a ground truth is an amelioration of the partitions in the hierarchy by

reordering them. They generate new partitions with the same edges ordered by com-

bined effect of proximity to the ground truth, and high value of saliency function(note

that this is optional). More clearly, how do we combine a ground truth and a hierarchy?

The inputs given to us are the saliency function s representing the initial hierarchy H

and the ground truth set of edges G. They are shown in figure 4.15. Here we use the

4-connected distance function of ground truth d4, to define the inverse distance function

137



138 4.7. ALGORITHM AND EXPERIMENTS

Figure 4.15: Hierarchy fusion: Here we fuse two hierarchical structures by introducing
a distance function d∑ which is unique(given its leaves) for every saliency function s.

g = 1 − d4. The output is a new saliency γ(s + g) and thus a new hierarchy Hg which

contains partitions from H that are closest in distance to the ground truth partition G

and the initial saliency.

Figure 4.14 summarizes the input inverse distance function g and resulting saliency func-

tions. The input saliency is shown for input image 239096 from the Berkeley database,

already shown in figure 4.6. The ground truth G is more or less representative of the im-

age structure in the saliency s, and thus the resulting transformed saliency sG = γ(s+g)

is not too different, except that in general edges very far from the ground truth are re-

duced or weakened, while the ones in close proximity are reinforced (see Fig 4.14). An

additional example with a point ground truth is used to demonstrate with a function

which has nothing to do with the image structure. The choice of the distance function

affects the partitions selected as seen in the toy example in Figure 4.16, the diamond is

extracted before the circle in case of city-block distance, while the Euclidean distance

extracts both at the same scale.

4.7.3 Fusions of two hierarchies

In this second example, we will demonstrate a fusion of two hierarchical structures. In

this specific example we show how to combine hierarchy of segmentations from images

having two very different image structures. In figure 4.15 we present the images of a

flower in Image 1 and Corn in Image 2 portraying different textures. The hierarchies

are represented by their saliencies s1 and s2.
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Figure 4.16: Scaling space with different distance functions: Here we demonstrate
how the inner diamond and the circle get separated when using the (4-connection d4)
city-block distance function, while the euclidean (dball) distance function reaches them
at the same scale. This produces two different saliency functions and thus hierarchies:

γ(d4 + π0) (with 2 levels) and γ(dball + π0) (with single level).

To achieve this fusion one needs a spatial proximity information of the different scales

of partitions across the two saliency functions s1 and s2. Thus we convert a saliency

function s into an ordered distance function d∑(s) by summing the distance functions

of the different partitions in the thresholds of the saliency function as in equation (4.5).

One of them, s1 say, serves to generate the function g1 by taking the sum dΣ(s1) of the

distance functions of its level sets,

dΣ(s1) =
∑

d(Xt), Xt = {x | s1(x) ≥ t}, (4.5)

where 0 ≤ t ≤ tmax. The information about s1 is considered as summarized by dΣ(s1).

Thus we use the distance function representing one hierarchy over the leaves (Jordan-

net) of another hierarchy to obtain a composition of the two hierarchies. It enters as

operand in the net opening γ, which gives the modified saliency γ(dΣ(s1) + s2) of the

Image 4.15. By inverting the roles of s1 and s2 , we find similarly the modified saliency

γ(dΣ(s2) + s1) Both are depicted in Figure 4.15. Thus here we are able to see in s12 the

closest set of partitions in the flower saliency function s1 to the texture partitions from

the corn saliency s2. We can scan the different scales by weighting by a constant K the

distance function d∑(s), i.e. sK12 = γ(K · d∑(s2) + s1). Here we have demonstrated the

crossed saliencies for K = 10, though to find interesting scalings is another problem.
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4.7.4 Composition by ∧: Hausdorff distance Ordered saliencies

Until this section we have described how the inverted distance function g = 1 − d of

Ground truth partition G was used to reorder the Jordan curves in a hierarchy of seg-

mentations H to produce a new hierarchy of partitions ordered by the proximity to

the ground truth. Though this operation in the Hausdorff sense has only measured the

distance from the ground truth to the partition contour. In this section we briefly demon-

strate an example on how to calculate the Hausdorff distance reordering the hierarchy

of partitions by going from the hierarchy H to the ground truth partition G.

This is a bit more tougher to calculate since in the earlier case the distance function

associated with set G gave a point-wise function that could be used on each Jordan net.

In this case for each point in the Jordan net, we can now define the complementary

distance as the radius dilation at each point so as to cover the ground-truth partition

completely. The distance function can now be writing as the infimum of the distance

function of a point x on the ground truth set G:

dG(x) = ∧x∈Gd(x) (4.6)

This basically corresponds to the supremum of the distance function for each point, on

the ground truth set.

Thus now one can write the reordering of the Jordan anew now using this new distance

function as follows:

sG = γ(π0 + (1− dG)) (4.7)

Now we can produce two saliencies: Going from G → H and other from H → G. We

are now in a position to write the Hausdorff distance ordered saliency:

sG↔H = γ(N0 +
1

d
) ∨ γ(N0 +

1

dG
) (4.8)

There is also another way of writing this saliency function:

sG↔H = γ(N0 +
1

d ∧ dG
) (4.9)

The two methods of writing the Hausdorff distance ordered saliency suggest that it

is composed of the supremum of two net openings, which is also an opening and the
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Figure 4.17: Toy example demonstrating Hausdorff distance ordering. First case with
blue circle demonstrates a symmetrically aligned pair circular contours(black, blue), the
second case demonstrates an asymmetrically aligned pair of circular contours(black,
red). Aside the arrows we calculate the infimum of radius of dilation for one contour to
cover completely, the other, for example, the radius of dilation of set in blue to cover
set in black is 1, while radius of dilation for set red to cover set in black is 2. The third
figure demonstrates how the two circles are reordered, by associating them with the

inverse of the Hausdorff distance between the circles.

resulting function is also a saliency. The inverse of the distance is taken to produce a

function which is highly salient when the classes of ground truth and the segmentation

are symmetrically placed.

4.7.4.1 Partition Asymmetry and Hausdorff distance

When the ground truth partition G and the base Jordan Net N0, are refinements of each

other, i.e. G ⊆ N0 or, N0 ⊆ G, we demonstrate here that the Hausdorff distance between

their contours, in this case provide a measure of asymmetry between the partitions.

Consider the simple example of concentric and asymmetrically placed circles, figure

4.17. The Hausdorff distance in case of concentric circles case is the supremum of two

equal distances, that correspond to the difference in radii. This is demonstrated by the

blue circle. While in case of an asymmetrically placed red circle, the distance from the

black→red = 0.3 red→black = 2, is shown. The Hausdorff distance based saliency is

calculated using equation 4.9.

The Hausdorff distance function ordered saliency function thus basically produces high

saliency value for partitions which are symmetrically placed w.r.t the contours of the

ground truth set. Symmetry of object contours itself can be used to extract salient object

contours [110]. But here the Hausdorff distance ordering provides different partition

contours in base Jordan net N0 that are symmetrically placed w.r.t the contours of the

ground truth partition contours. We demonstrate with different refinements of ground

truth in figure 4.18
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Figure 4.18: This example demonstrates 3 scales of ground truths and the correspond-
ing, Hausdorff distance ordered saliency functions. The base Jordan net is extracted
from the leaves/finest level of the input saliency function. Partitions corresponding for

each ground truth at a threshold(level) of 350 is shown.
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4.7.5 Combining multiple ground truths with a single hierarchy

As described already in the subsection of refinements and overlaps 3.2.2, the segmenta-

tion and ground truth partition, are either refinements of each other locally, or contain

overlapping classes. Furthermore different ground truths may not capture the same

details (contours). This led us to use an Inf-composition of the set of inverted dis-

tance functions so as to combine multiple parts of ground truth partitions for the same

scene/image. This is a direct consequence of the fact that the distance function of union

of disjoint ground truth contours is the infimum of distance functions of the individual

disjoint contours.

Thus in a more formal setting if we have a ground truth G1 with inverted distance

function g1 = 1 − d(G1), and the elementary Jordan net (leaves) from a hierarchy, we

can write the saliency function:

s1 = γ(N0 + g1) (4.10)

Now for a set of disjoint or refined ground truth sets: G1, G2, ...Gn with inverted distance

functions d1, d2, ...dn we can calculate the saliency on the Jordan N0 as:

s∧ = ∧ni=1γ(N0 + (1− di)) (4.11)

which can be rewritten using a inf-composition over the functions followed by the net

opening:

s∧ = γ(N0 + (1− ∧ni=1di)) = γ(N0 + g∧) (4.12)

Let’s consider the case when we have multiple ground truths Gi drawn by multiple

experts, and the problem to now consider is to produce a saliency function weighted

by the relative frequency with which the experts draw the same contours as ground

truth. In this case the inf-composition of distance functions d∧ = ∧idi, it would produce

minima’s at all points of the ground truth, including the locations where they intersect.

In the current problem one would like weighting that produces saliency for contours

proportional in value to the number of ground truth contours. This gives us:

s+ = γ(N0 + (1−
n∑
i=1

)di)) = γ(N0 + g∑) (4.13)
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Figure 4.19: This toy example demonstrates a partition N0 with three ground truths
partitions. Two of the three ground truth lines overlap and is represented in red,
while the single ground truth in blue. In such a case one produces the saliency function
weights as seen. This is due the composition by addition that weights a partition contour
if its proximal to larger number of ground truths (here overlapping, but in general can
span space at different locations) than if it is simply close to a single ground truth.
This also in contrast produces a different ordering compared to the ∧-compositions.

In the following toy example we demonstrate how co-occurrence of ground truth contours

can be used to reorder partition contours. The composition by addition is interesting in

cases where the image being segmentation has continuous gradient regions, and there are

different possibilities and variations in the human experts segmenting the ground truth.

Furthermore in case of the image in study, there are also variations in segmentation

possible on account of texture and the segments that the user might interpret as salient

[115]. Thus different composition rules serve to extract different partitions from the

primitive partition or Jordan Net.

Here we now demonstrate an example (see figure 4.20) over a texture image where the

human annotated ground truths vary due the presence of texture, as seen the image

is difficult even for a human to segment, since there are a variety of scales and details

present. We also show the different inverted distance functions associated with the

ground truths, as well as the inverse of the sum of distance funtions g∑ = 1−
∑

i di. The

different saliencies generated from the different inverted distance functions gi = 1 − di
over leaves N0 obtained from origial saliency function (UCM), are in figure 4.21. Too

see more clearly the effect of the sum composition, we demonstarte the M -measure in

equation 4.14 for the different saliencies. The observations we can make, are that the

sum composition produces larger range of unique saliency values and thus partitions

producing a finer analysis of the hierarchy. This verifies the weighting demonstration in

toy example in figure 4.19.
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Figure 4.20: Initial image with (a,b,c,d,e) representing five different ground truths,
with images (g,h,i,j,k) corresponding inverted distance functions of ground truths.
While (f) shows the sum of ground truths, and (l) its inverted distance function. We
see different contours of the lizard in the image that are reinforced. Further more the
ground truth partitions in this case are not simple refinements, and thus validating our
use of a composition by addition. Corresponding net openings are demonstrated in 4.21
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Figure 4.21: Figure shows initial leaves partition N0 with three ground truths par-
titions, and the different net openings possible. The last saliency demonstrates the
composition by addition that weights, where higher weight is given to a partition con-
tour, if its proximal to larger number of ground truths (here overlapping, but in general
can span space at different locations) than if it is simply close to a single ground truth.
Composition by addition (eqn 4.13) also in contrast produces a different ordering com-
pared to the ∧-compositions (eqn) 4.12). Please refer to figure 4.22 to view the different

scales that can be extracted using the M-measure from equation(4.14).146
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Figure 4.22: The plot demonstrates the M measure for the saliencies in figure 4.21
generated with different inverse distance functions of ground truth(in figure 4.20),
saliency by Inf-composition and composition by addition. As we can see the inf and
sum composition form the bounds of variation of the M -measure which not only pro-
vides a structural measure of how many children are regrouped by the parent level in

each hierarchy but also the number of levels in the hierarchy.

4.7.6 Measuring structural changes after transformations

In this section we provide a way to analyse the structural changes in a hierarchy of

partitions, resulting from a net opening using a ground truth distance function. This

provides one of the possible measures to evaluate the hierarchy, while various studies

are already available on the subject [10, 54, 94]. We introduce an evaluation measure:

M =
‖πi‖L
‖πi+1‖L

=
#labels in childLevel

#labels in parentLevel
(4.14)

where, the quantity ‖πi‖L refers to the number of different labels at a particular level

of the hierarchy. The number of labels in the case of saliency function is the number of

labeled connected components, in the partition πi. The measure is not new and has been

widely used in studying dendrograms and hierarchies. Classically in computer science,

the branching factor for tree data structures, is the number of children at each node.

Measure M is plotted for different distance functions corresponding to different ground

truths and a point distance function, in figure 4.23. The x-axis here corresponds not only

to the threshold of the saliency function,i.e. level in hierarchy, but also to the proximity

of contours at this level to the respective ground truths. Though this measure M without
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Figure 4.23: Evaluating with M : The first row shows 3 different distance functions,
dGT2, dGT4, dptwith their corresponding ground truths on the top right corner of the
images. π0 is the leaves partition on which the distance functions will reorder the arcs.
In the bottom row we have the transformations γ(π + dGT2), γ(π + dGT4), γ(π + dpt)
representing new the hierarchies(saliency functions). The plot on the bottom right
displays the M measure at different levels of the hierarchy. The maximum number of
levels in these hierarchies is bounded by the maximum value of the distance function

producing a partition.

the proximity information, is non-informative since it can not distinguish between binary

trees. Neither can it distinguish between balanced quad-trees. Its insensitive to uniform

branching.

In this experiment the measure is used to compare the scales of classes in the initial

saliency and the transformed saliency. The discontinuities in the plot where M > 1

correspond to scales of the distance function at which merging/reordering of child parti-

tions occur. With the distance function value on the x-axis and branching measure M on

y-axis, each point on the graph provides at a give radius of dilation, how many number

of classes are recombined for the given distance function. This provides a granulometric

analysis of the partitions w.r.t the distance function used.

This is another measure extends the Global Precision-Recall similarity integrals de-

scribed in [61], that measured the integral of product of saliency function and the

distance function of ground truth partition. Though in this case, instead of a global

measure, we have a value M for each child with a valid proximity value assigned to

partition/level in the hierarchy.
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4.7.7 Geometric and Intrinsic Net openings

The net opening until now involved the combination of an external function and an ele-

mentary finite Jordan net. In this section we will show how we not only use an external

function, but also the intrinsic properties of partition itself to perform the opening. In-

trinsic properties here in this particular case refer to curvature of the partition contours.

We use a combination of a corner opening and net opening to basically transform an

input weighted quad-tree into a weighted K-d tree saliency function. Such geometrical

features have been studied to extract corner points [67]. For a study of geometric corner

point openings, or L-openings please refer to our paper [58].

When the geometry of the faces of the Jordan net are well defined as in cases of regular

polygons, one can also use this in applications involving polygonal mesh simplifica-

tions [35]. In extending the study and relaxing geometric constraints, one can think of

performing curvature based net openings, which envisage the use a global point-wise

curvature function like in [27]. In the place of corner based L-opening, one can trans-

form the saliency to produce directional net openings that remove contours by ordering

them based on the supremum of local radius of curvature. In literature we also find

global contour extraction methods that use symmetry of object shape as a prior. This

helps extract certain object classes having a certain axis of mirror symmetry, which is

analytically measured [110], thus providing us a way to perform a symmetry based net

opening.

4.8 Braids from net opening

4.8.1 Braids from multiple functions on single J-net

In this section we show that given two numerical functions g1, g2 : R2 → R, and a input

Jordan net N0, we have:

Proposition 4.10. The union any two hierarchies obtained from the individual net

opening with any two numerical functions, forms a braid of partitions, where the monitor

hierarchy is given by the hierarchy obtained from the net opening using the supremum

of the two input functions. That is:

B =

{
H(γ(g1)) ∪H(γ(g1))

}
\ {E} on net N0 with Hmonitor = γ(g1 ∨ g2) (4.15)

This is a direct application of theorem 4.9. We can see that given any two numerical

functions g1, g2 the numerical net openings γ(g1), γ(g2) on a common net N0, are the
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highest lower bounds of g1, g2. Furthermore γ(g1 ∨ g2) is the bounding saliency function

for g1 ∨ g2. Also we have, γ(g1) ≤ γ(g1 ∨ g2) and γ(g2) ≤ γ(g1 ∨ g2). It is now direct

that the braid structure results when we are assured of the existence of γ(g1 ∨ g2).

Furthermore one can observe that the any transformed saliency functions γ(s+ g) of an

input saliency function s, by any external function g always produces functions that will

include the original saliency function s forming a braid.

4.8.2 Intersection of multiple Jordan nets

We recall here briefly the proposition 4.11, first proposed and proved in [58] , to further

study the net-opening operator in the context of calcuating supremums of partitions

which are not hierarchical. Further the same operators helps create braids of partitions.

Consider all J-nets included in a basic one N0, whose associated faces are called the

leaves. Two families derive from N0. Firstly, the power set P(N0), constituted by all

sets whose points belong to N0. Secondly, the family N (N0) of all J-nets included in

N0. We have N (N0) ⊆ P(N0). Both sets P(N0) and N (N0) comprise the empty set ∅
and are ordered by inclusion. P(N0), as a power set, is a Boolean lattice. But unlike

P(N0), the family N (N0) is not complemented: if N ∈ N (N0) the complement N0\N
may have Jordan arcs which are not looped. However, the following property holds:

Proposition 4.11. The set N (N0) of all J-nets included in the base N0 forms a lattice

with N0 and ∅ as universal bounds. The supremum of N,M ∈ N (N0) is the union

N ∪M , and the infimum is the union of all Jordan curves common to N and M(empty

set included).

Proposition 4.11 suggests to associate an opening with the N0-infimum.

Corollary 4.12. Given X ∈ P(N0) the union γ(X) of Jordan curves C contained in X

γ(X) = ∪{C ⊆ X,C ∈ N (N0)} (4.16)

is an opening on P(N0), called net opening, whose set of invariants is N (N0). In

particular the N0-infimum between N,M ∈ N (N0) is γ(N ∩M).

To conclude this discussion on Jordan net openings operator, in figure 4.24, we demon-

strate the net opening while composing over the intersection of two elementary finite

Jordan nets.
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Figure 4.24: Net opening over the intersection of two finite Jordan nets N,M . This
example demonstrates the use of the net opening operator to extract from the inter-
section of two Jordan nets (which is not necessarily a set of Jordan curves) the largest
Jordan net in the base net N0. Since we work on pixel domains, one can consider the
finest net N0 to be the one separating all pixels. This operator will be used to create
braids while recomposing partitions from different hierarchies. This a very simple op-
erator, and it helps in combining partitions which don’t share a common leaf partition

or Jordan net.

Note: The union of finite countable set of Jordan curves gives a finite set of points,

over which a further net opening gives a finite Jordan net. Though this may not be the

case with the union of Jordan nets, which might produce Jordan curves with infinite

number of faces. Thoght it should be noted that on the base Jordan net representing the

pixel grid, the union will always, provide a finite Jordan net, and numerical net opening

consists of a union of openings.

4.8.3 Braids over multiple hierarchies

In this section we use the elementary binary net opening described in the corollary 4.12,

to create the monitor hierarchy. Demonstrated in the figure 4.25, the net opening is used

to extract the largest partition whose classes contain the classes of two input partitions.

By iterating this binary operation top-down on both input hierarchies, over every pair of

partitions extracted for the threshold of the saliency function, one generates the monitor

saliency function, and thus hierarchy. Please refer to algorithm 5 in the next chapter,

for a better idea of how this is done in a top-down manner. Figure 4.26, shows the finest

partition in the monitoring hierarchy. When we stagger two hierarchies of different

number of levels, and perform the top-down algorith 5 we can obtain different scales

of πmin partitions, and thus different monitor hierarchies, but the braid generated by

starting top down on all hierarchies produces the largest monitor.

This composition of hierarchies enables a multi-variable hierarchies to be governed by a

monitor hierarchy, enabling us now to calculate optimal cuts on the braids. One needs

to note that the monitor hierarchy can turn out to be trivial or of less importance if it

very few monitoring supremum classes.

There are a variety of experiments we can perform in case of multi-variable hierarchies:
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• Hierarchies for color images, for example over the R,G,B images.

• Hierarchies for Hyperspectral images, similar to the RGB case, except larger in

dimension

• Hierarchies for Stereo images, to characterize hierarchical structures that remain

invariant across the stereo-pair iamges.

In these different applications one has different interpretations for the monitor hierarchy.

Figure 4.25: Calcuating the monitor partition of two partitions using the net opening.
The partitions (a), (b) are extracted from watershed flooding by attributes of area and
volume respectively [32]. One can note that the watershed by different attributes are
not hierarchical. (c) is the intersection of contours between the two partitions, (d)
gives the net opening of the intersection, resulting in the monitor partition. (e) shows
a magnified view of the contour in the intersection set, where the area and volume
floodings have small difference, resulting in a fissure in the intersection set. This leads
to a loss of a large class, in the corresponding net opening. We calcuate the monitor of

the braid formed in such an event demonstrated in figure 1.6.
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Figure 4.26: Figure shows, Leaves partition πmin 1 in watershed saliency by area,
πmin 2, corresponding partition from watershed saliency by volume. And finally πmin as
described in figure 1.7 in chapter 1, is the net opening of the intersection πmin 1∩πmin 2.
The πmin of the braid and finest partition picked from watershed saliency πmin 2 by

volume are the same, thought this might not be the case generally.
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4.9 Summary

Chapter contribution summary

I We worked purely on the contours of a finest Jordan net and defined a net-

opening which either removes or preserves the arcs in the net, producing a

new hierarchy.

I The net opening was used to find the hierarchy whose saliency is the closest

to a given ground truth, represented by its distance function g.

I This is the first time the operator has been interpreted as an opening γ pro-

ducing the largest Jordan net that includes any input contour set X. The

dual closing does not exist since the lattice N0 is not complemented.

I Geometrical net openings were discussed which help simplify regular hierar-

chies like Quad-trees and mesh hierarchies. We distinguish here the difference

between reordering the Jordan nets based on an external function and based

on the intrinsic properties of the partition created by the Jordan net (curva-

ture, junctions, symmetry).

I We demonstrate rules of composition of functions, yielding the largest saliency

function, bounded by the composition.

I In Arbelaez et al, Cousty et al. [10, 32], the saliency function is used solely

as a representation of the hierarchy of partitions. They provide a visual inter-

pretation of the segmentations at different scales of attributes(dynamic, area

and volume) of the gray scale components. In contrast, our study the saliency

is used an input numerical function to manipulate the hierarchical structure.

I Braids can be created by composing multiple hierarchies, by performing net

opening over the tuples of partitions from the different hierarchies. Braids can

also be created by composing net openings using multiple external functions

on the same Jordan net.
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Chapter 5

Algorithms and Graphs

In this short chapter we provide a quick review of super-pixel segmentation methods,

demonstrating the different problems encountered in region merging methods, a poste-

riori. Further we also continue from the work by Brendel-Todorovic [22] who poses the

image segmentation problem as an extraction of maximally weighted independent set

(MWIS), from the intersection graph over a family of segments generated from any low

level segmentation algorithm. To handle them more formally we re-introduce the defi-

nition of partition graphs. This class of graphs enables a bijection between the MWIS

of the intersection graph and the subsets that provide a partitions of the space. We

end the chapter with a max-flow optimization problem on a tree and a graph structure

adapted for BOPs.

5.1 Region merging methods review

Here we briefly analyse the emergence of super-pixel/region merging/hierarchical seg-

mentation methods. In this bibliographic section we will overview a small family of

hierarchical segmentation methods. Before this we will shortly provide a motivation on

evolution of clustering methods in the domain of image segmentation.

There has been over few decades of study on the problem of image segmentation, and on

using region based methods. For computationally tractable segmentation algorithms one

often operates on pre-segmentation images. Thus the area of study is now the choice

of pre-segmentation to produce a good leaves partition or super-pixel segmentation,

the set of super-pixel features, to choose a discriminatory dissimilarity metric, as well

as statistical measures and others, to recombine the regions. These properties of a

good super-pixel algorithm in a way reflect the distinguishing properties of hierarchical

agglomerative clustering(HAC) algorithms: Metric and Linkage.
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Here we provide brief over of studies which compare now how different segmentation

algorithms generating super-pixel and the subsequent merging orders or linkage crite-

ria. The dissimilarity is usually represented as the weight on the edge set of a Region

Adjacency Graph(RAG) associated with the super-pixel segmentation.

To begin with the super-pixel methods are generated not just for reduced complexity

but also to the ends of using grouping super-pixels to produce a good segmentation of

the image. One classical example one can site is the Normalized Cut based super-pixel

segmentation approach to build limb and torso detectors [83], the outputs of which are

assembled to classify human posture. One can find a good but brief summary of image

segmentation by region merging methods in [111].

Image segmentation has been formulated as a undersegmentation-agglomerative merge

step. [50] studies Volume based watershed, Mean-shift, and FH algorithm (Felzenszwalb

and Huttenlocher) [40] pre-segmentations, using a hierararhical agglomerative merging

based on the euclidean distance between the coordinates of colors in CIELAB space.

The difficulty evident from the study are the different parameterizations to extract a

presegmentation from each of the 3 methods. [48] uses Priority queue based optimized

agglomerative clustering algorithm, using the Hotelling T 2 statistics on region, again

in the CIELAB color space. [23] again study statistical measures of the regions, the

Kullback-Leibler Merging Criterion, that maximizes the probability of regions being

generated from the same distribution. An interesting scale based measure is the image

size dependent scale threshold given by T = α · ‖I‖/n, where n is the number of regions,

and ‖I‖ of the number of pixels in the image. This threshold is used with the KL merging

criterion to control the scale of the partition produced, by varying parameter α. One

also notes the work in producing hierarchical floodings based on the area, volume and

dynamic of gray scale components, producing a hierarchical segmentations by Cousty et

al.[32].

The watershed-cuts as already remarked in [86, 109] with Soille’s constrained connec-

tivity are calculated rapidly thanks their use of single linkage clustering (SLC), in the

sense of linkages in clustering algorithms, while that of Guigues Cocoons [48] provides

a complete linkage clustering (CLC).

5.2 Algorithms

In this section we compile the algorithms for calculating the minimal λ-cuts given a

HOP or BOP, a Lagrangian parameter λ, the scale function Λ for each parent in a HOP

or BOP. Finally given the Λ-function, one can calculate the family of optimal λ-cuts.
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First we will present the original dynamic program used by Guigues, over the HOP, and

later continue with version for the Braids.

5.2.1 Optimal Cut DP on HOP

Algorithm 1: DP on HOP: Optimal-Cut(H,λ, ωϕ(S), ω∂(S)

Data: H, λ, ωφ(S), ω∂(S).
Result: Optimal cut π∗, ωϕ(π∗), ω∂(π∗)
begin

N ←− |H| # levels F (S)←− 0, S ∈ H Set all flags to zero for level ∈ [2, N ] do
for S ∈ H(level)] do

ω(S)←− ωϕ(S) + λω∂(S)
ω(π(S))←− ComposeFunc(ωϕ(π(S)), ω∂(π(S)), λ)
if (ω(S) ≤ ω(π(S))) then

F (S) = 1 Optimal Parent
else
∀Ti ∈ π(S), F (Ti)←− 1 Optimal Child

end

end

end

end
for level ∈ [2, N ] do

for S ∈ H(level)] do
if F (S) then

π∗ ←− π∗ ∪ S add optimal classes to cut.
ωϕ(π∗) = ωϕ(π∗) + ωϕ(S)
ω∂(π∗) = ω∂(π∗) + ω∂(S)

end

end

end

end

Algorithm 1 is the same as BottomUpAnalysis from Garrido’s thesis [42] and calculates

the optimal cut given a scale parameter λ. It also calculates the R,D functions in [42]

which here are ωϕ(π∗), ω∂(π∗). The energies ωϕ, ω∂ are are available for all classes in the

hierarchy S ∈ S. The energy in case of Salembier-Garrido and Guigues correspond to

the Lagrangian ωϕ(π)+λω∂(π). While the composition of energies of child classes can be

obtained by a general function denoted here by ComposeFunc(ωφ(π(S)), ω∂(π(S)), λ)

or ComposeFunc(ω(S)), which represent:

• Addition:
∑

Ti∈π(S) ωφ(Ti) + λω∂(Ti)

• Supremum:
∨
Ti∈π(S) ω(Ti)

• Infimum:
∧
Ti∈π(S) ω(Ti)
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• Also

[∑
u∈[1,q] ω(Tu)α

] 1
α

Minkowski-functional from equation(1.33).

all of which are h-increasing energies with compositions that are h-increasing. The

algorithm 1 can also be used for a single energy, while not involving a constrained

optimization problem.

Algorithm 2: Λ-Func(H,ωφ(S), ω∂(S))

Data: H, ωφ(S), ω∂(S).

Result: Scale function Λ(S).

begin

N ←− |H| # Levels

∀S ∈ H,AC(S)←− 0 Set all Anti-causal flags to 0

∀S ∈ H(1),Λ(S),←− 0 Set Λ(S) to 0 for leaves level

for level ∈ [2, N ] do

for S ∈ H(level) do

if |π(S)| > 1 then

Λ(S)←−
(∑

T∈π(S) ωϕ(T )−ωϕ(S)

ω∂(S)−
∑
T∈π(S) ω∂(T )

)
AC(S) =

(
Λ(S) < {∨Λ(Ti), Ti ∈ π(S)}?1, 0

)
else

Λ(S)←− Λ(π(S)) repeat Λ when parent has single child

AC(S) = AC(π(S)) Repeat flag

end

end

end

end

The optimal value of λ in case of Garrido has been obtained by a gradient search which

starts with a upper and lower bounding value of λ, giving ωhϕ(π), ωh∂ (π) high data and

constraint terms, and ωlϕ(π), ωl∂(π) and the lower terms, such that the constraint is

bounded between the two bounds ωl∂(π), ωh∂ (π). The new λ iteratively recalculated by

setting it to

λ′ =
ωlϕ(π)− ωhϕ(π)

ωh∂ (π)− ωl∂(π)
(5.1)

And in each iteration one recalculates the optimal cut for each new λ′.

Algorithm 3 is not an efficient implementation, we present it for the sake of pedagogy

to demonstrate how scale-increasingness works. One has linear complexity according

to L.Guigues implementation, to extract all the λ-cuts. One should note here that the

Guigues calculates the whole hierarchy of optimal cuts π∗(λ), which is not the same as
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Algorithm 3: Hierarchy of λ-cuts H∗.

Data: H, ωϕ(S), ω∂(S).
Result: Optimal Cut Hierarchy H∗

begin
i←− 1 indexing starts at 1
Λ(S)←− Λ-Func(H,ωϕ(S), ω∂(S))
N ←− # Parents in H π∗(λ)←− OptimalCut(H,Λ(1), ωϕ(S), ω∂(S)
π∗(λ) is Finest Optimal Cut
while |π∗(λ)| > 1 do

i←− i+ 1
π∗(λ)←− OptimalCut(H,Λ(i), ωφ(S), ω∂(S))
H∗(i)←− π∗(λ)

end

end

Salembier and Garrido, who calculate an optimal λ∗ given a constraint function value

ω∂ ≤ C.

5.2.2 Optimal Cut DP on BOP

In this section we first present the algorithm to create a Braid of partitions by composing

a family of HOPs.

The algorithm 4 extracts an optimal cut given q-hierarchies and a λ. The Monitor

hierarchy to compose the q-hierarchies is generated by algorithm 5, which uses the net

opening operator. Though this might not be the only way to generate braids.

This demonstrates that given q-hierarchies one might encounter two possibilities:

1. Monitor Hierarchy with, single(full space) class, as unique class.

2. Non-trivial monitor hierarchy and thus Braid.

In case (1) one can now calculate the q-optimal cuts independently from the q-hierarchies,

after which the optimal cut with the least energy is picked, in case of equal energies, one

picks any of the equivalent optimal cuts. In case (2), the braid structure now ensures an

partial optimal cut, that composes partial partitions from the q-hierarchies, and com-

pares it with the monitoring hierarchy’s parent, in the dynamic programming stage. The

partial optimum is then either, the partial partition that is minimal in energy, or any

of the equivalent partial partitions with equal energies (enforcing singularity here), or

the parent. This would ensure a minimal λ-cut that could reach at least equal or better

infimum w.r.t the original q-hierarchies, This betterment also impinges constraints upon

the generation of the braid structure.
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Algorithm 4: DP on BOP: Optimal-Cut-BOP({Hi, i ∈ [1, q]}, λ, ωϕ(S), ω∂(S))

Data: q-Hierarchies {H1, H2, ...Hq}, λ, ωφ(S), ω∂(S).
Result: Optimal cut π∗(λ), ωϕ(π∗(λ)), ω∂(π∗(λ))
begin

Hmonitor ←− generateBraid({H1, H2, ...Hq}) monitor hierarchy
∀H ∈ {H1, H2, ...Hq}, Ni ←− |Hi|
Nmonitor ←− |Hmonitor| # levels in Hmonitor

TrivialBraidflag ←− |Hmonitor(1)| # classes in leaves of Hmonitor

if TrivialBraidflag then
\\Perform q-DPs independently, without the braid structure
for H ∈ {Hi, i ∈ [1, q]} do

[π∗i (λ), ωϕ(π∗i (λ), ωϕ(π∗i (λ)] = Optimal-Cut(H,λ, ωϕ(S), ω∂(S))
ωi(λ)←− ωϕ(π∗i (λ) + λ · ωϕ(π∗i (λ))

end
i∗ ←− arg mini ωi(λ)
π∗(λ) = π∗i∗(λ)
ωϕ(π∗(λ)) = ωϕ(π∗i∗(λ))
ω∂(π∗(λ)) = ω∂(π∗i∗(λ))
return

else
\\Perform DP with monitor hierarchy
F (S)←− 0, S ∈ H Set all flags to zero
for level ∈ [1, Nmonitor] do

for S ∈ Hmonitor(level)] do
ω(S)←− ωϕ(S) + λω∂(S)
for πi(S) ∈ Hi do

ωi(π(S))←− ComposeFunc(ωϕ(πi(S)), ω∂(πi(S)), λ)
if (ω(S) ≤ ∧iωi(π(S))) then

F (S) = 1 Optimal Parent
else

π∗(S) = arg mini ωi(π(S))
∀Ti ∈ π∗(S), F (Ti)←− 1 Optimal Child

end

end

end

end

end
for S ∈ {S} do

if F (S) then
π∗ ←− π∗ t S add optimal classes to cut.
ωϕ(π∗) = ωϕ(π∗) + ωϕ(S)
ω∂(π∗) = ω∂(π∗) + ω∂(S)

end

end

end
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The scale-function and hierarchy of λ-cuts algorithms do not change very much in their

structure for the BOP otherwise.

Algorithm 5: Generate Monitor Composing q-hierarchies.

Data: {Hi}, i ∈ [1, q].
Result: Monitor Hierarchy Hmonitor

begin
∀H ∈ {Hi}, i ∈ [1, n], Ni ←− |Hi|
Nmin = miniNi

\\Top-Down scan on q-hierarchies
for level = 1 : Nmin do
∀H ∈ {Hi}, i ∈ [1, n], πi ←− H(Ni − level)
\\Intersection set of all partitions
I =

⋂
i πi

\\Net opening on intersection set.
Hmonitor(Nmin − level)←− γ(I)

end

end

5.3 Intersection Graphs for Partition selection

The goal in this section is to identify that the Maximaly independent sets of intersection

graphs corresponding to a family of partitions, enables one to extract partitions of the

space, other than the ones in the family. Further on we re-introduce the family of

“Partition Graphs” which explicity ensure this property for general coverings of the

space.

First off, to being this section we follow the work in Brendel-Todorovic [22] which pro-

vides the formulation of image segmentation segmentation problem as a maximally

weighted independent set(MWIS) problem on the intersection graph of segmentation

stack generated by low level segmenters.

We note that the MWIS problem on the intersection graph corresponding to a HOP,

consists in calculating a family of optimal cuts in the hierarchy. We also discuss a family

of partition graphs modeling partitions of the input space given any general covering set,

that has useful properties.

5.3.1 Definitions

We briefly review the definitions of a maximal independent set on a graph, and the

Maximally weighted independent set on a weighted graph, in this section.
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b
c

f
e

d

a

Figure 5.1: For the given graph, the maximal independent set of vertices are
{{a, c}, {b, e}, {d, f}}. Addition of any other vertex would lead to an inclusion of an

edge between the MIS vertex set. This characterizes its maximal nature.

Let the pair G = (V,E) be an undirected finite graph where V denotes the set of vertices

and E denotes the set of edges. If G is connected and acyclic, then it is called a tree.

A subset I ⊆ V is said to be an independent set of G if no two vertices are adjacent in

G, or there is no pair of nodes in I linked by an edge in E. Assume also that a positive

value is associated to every node in the graph ω : V → R+. Now we define a maximal

independent set (MIS).

Definition 5.1. (Maximal Independent Set) Given an graph, an independent set consist

of vertices in a graph, where no two vertices are adjacent. A maximal independent set

is an independent set such that no more vertices can be added to the set without forcing

the set to contain an edge.

Figure 5.1 shows an example of a MIS. Now one can further define a weighted counterpart

of the MIS: Maximally weighted independent set(MWIS). The weight of the independent

set I is defined to be the sum of the weights of vertices in the set: ω(I) =
∑

S∈I ω(S).

Now, maximally weighted independent set(MWIS) is an independent set with maximal

weight.

In case of identical weights, the maximal property corresponds to the ordering relation,

that there are no other set I ′ that contains I. Finding a MWIS in a general graph is

NP-hard. For particular cases of the graph structure, we can calculate the MWIS in

polynomial time.

Definition 5.2. An undirected graph G = (V,E), where for any covering {S1, S2, ...Sn}
of the space E, on associates a node vi ∈ V of the graph for each set Si, and connecting

any two vertices vi, vj when their corresponding sets have a non-empty intersection, i.e.

Si ∩ Sj 6= ∅.

One can distinguish different types of graphs by the nature of the intersection between

two sets in the family covering the space:

• Intersection Graph: Si ∩ Sj 6= ∅
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• Overlap Graph: Si ∩ Sj 6= ∅ and Si * Sj and Sj * Si

• Containment Graph: Si ⊆ Sj and Sj ⊆ Si

• Disjointedness graph: Si ∩ Sj = ∅

Following which various combinatorial problems are posed based on the characterization,

such as intersection number, containment numbers, (minimum size of model in question)

etc. Intersection graphs in general have been used in the area of computational geometry,

with various types based on the object under study, e.g. intervals, polygons, lines or

other geometric objects [75], as well as in abstract graph theory.

MIS and hierarchies:

There has been some notable work in using the maximal independent sets, on the one

hand to create the hierarchies, while on the other hand to perform partition selection or

in other words extract an optimal cut.

To create stochastic hierarchies of partitions with minimal height, Haxhimusa et al.

[51, 53], create a graph pyramid from maximal independent vertex set of a base weighted

pixel graph, while associating a uniform distribution of values to the vertex set. This

is purely to generate a HOP, and not partition selection. The paper also studies the

Maximal Independent Directed Edge Set(MIDES), to create the stochastic pyramid.

From experiments [22], it is notable that MWIS algorithm select meaningful segments

from a provided set of low-level segmentations of the image. This of course depends

on the features producing, based on the weights or energies assigned to each segment

and to each neighboring segment pair the MWIS outputs a single, unique partition of

the image. Brendel-Todorovic [22] applies MWIS onto the already calculated UCM

hierarchy, segmentation performance is noted to go up by selecting a cut traversing

several levels and not just a horizontal cut.

5.3.2 Partition Graphs

In this section we define a graph structure that would enumerate and extract the par-

titions in a HOP. This corresponds basically to the MIS of an Intersection graph corre-

sponding to a HOP.

First defined in [73], where for given set or space E, the Maximum Independent Sets of

a Partition Graph would correspond to partition of space E.
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Definition 5.3. (Partition Graph) Let S = {S1, S2, ..., Sn} be a family of distinct, non-

empty subsets of some universal set U . Then intersection graph G for the family S,

if

1. For any two vertices x, y are adjacent iff Sx ∩ Sy 6= ∅,

2. If the family covers E, i.e. E =
⋃
S∈S S,

3. If every maximal independent set M on the vertices in the family Sx : x ∈M par-

titios of E,

Then G is partition graph of S [73, 74].

Thus for any MIS M ⊂ V yields a partition,

E =
⊔
v∈M

Sv

Furthermore this results gives a bijection between the partitions from a HOP and the

family of MIS of the partition graph corresponding to the classes from a HOP. Consider

M := {M} to be the set of all MIS of a partition graph corresponding to a HOP H,

then we can write:

M→ Π(H,E) (5.2)

One of the important properties from [73], we will be using in the case of hierarchies

and later for braids, is that the subgraph of any partition graph will also be a partition

graph for the subset of vertices considered in the subgraph. This property is simple to

prove, though is vital to understand the nested structure that recursively is produced in

each class in the hierarchy/braid. We will return to this point shortly. We also see later

why the intersection graph for a braid does not form a partition graph, but needs some

transformation so as to have the MIS-partition bijection as in equation 5.2. For further

development on the properties of the graph one can find a good summary in [75].

5.3.3 Maximally weighted Independent Set on HOP Intersection Graph

Given a hierarchy of partitions(HOP) H of space E, one can construct an intersection

graph, where each class family S = Si ∈ H is represented by node vi ∈ V , and an

edge between any two classes is added when they have non-zero intersection Si ∩ Sj 6=
∅,∀Si, Sj ∈ H. In case of hierarchies the intersection is necessarily implies an inclusion

relation, though in case of braids this will not be the case.
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E

a1 a2

l1 l2 l3 l4 l5

Figure 5.2: Typical Intersection Graph for a hierarchy of partitions H. The inde-
pendent sets of such an intersection graph enumerates all the cuts in the hierarchy H:
{π1(E) = l1, l2, l3, l4, l5, π2(E) = a1, l4, l5, π3(E) = l1, l2, l3, a2, π4(E) = a1, a2, π(E) =
E}. This graph codes the intersection of classes in the hierarchal structure shown beside

it.

The intersection graph corresponding corresponding to the classes of H, is in fact a

containment graph, where an edge exists between any two vertices V (Si), V (Sj) is Si ⊂
Sj or Si ⊃ Sj [38]. This produces an edge between any child and all of its ancestors and

vice versa. One can note that the whole space E as a single class, if present, is linked

to all the other nodes in the graph since its intersection with any class is not empty.

Proposition 5.4. The intersection graph for a family of classes S = {S|S ∈ H} from

any hierarchy of partitions, is a partition graph, and consequently the Maximum Inde-

pendent Sets(MIS) of this Partition graph has a unique correspondence with the cuts in

the hierarchy, ∀x ∈M , ∃π(E) ∈ ΠH(E).

Note for brevity we reiterate here that, the maximal nature of a Independent set does not

refer to the refinement or coarseness of the classes in the partition, and the impending

refinement ordering of partitions. One can now add the following observation:

MWIS for HOP: Now, given a weight ω : V → R+ to each node, then the Maximally

weighted Independent Set (MWIS) is the MIS with the largest weight, denoted by the

family M∗. This basically refers to the fact that there are more than one, MWIS that

partition the space. When we have the singular energy ω 1.9, the exists only one MWIS,

i.e. M∗ = {M∗}, which corresponds to the unique optimal cut.

An example of MWIS on the intersection graph formed for a given hierarchy of partitions

is shown in figure 5.2.
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E a1 a2 b1 b2

E

a1 a2 b1 b2

Figure 5.3: The MIS of the intersection graph corresponding to family of partitions
from a Braid are shown in figure. They are {(a1, a2), (b1, b2), (a1, b2), (E)}. Node pair
(a1, b2) form a MIS but does not form a cover of the space, since if A t Y 6= E.
Consequently the intersection graph is not a partition graph for the class family
{a1, a2, b1, b2, E}. This is due to the missing edge shown in red, which when added

transforms the graph in to a partition graph.

5.3.4 Intersection Graph for Braids

Using low-level segmenters like in [22], or super-pixel segmentations algorithms like SLIC

[1] with increasing scale, one can create “stack” of partitions/segmentations Πstack. and

its intersection graph was calculated. For the purpose of robustness [22] to avoid thin

or parasitic intersections, Brendel-Todorovic adds a constraint that the overlap between

segments needs to be greater than a filtering threshold chosen, i.e., Si ∩ Sj ≥ t. This

also the reason why [22] needs morphological post-processing to remove soft-overlaps.

One also needs to take into account that this threshold needs to be chosen smaller than

size of classes in the stack, i.e. t << |Si|.

Intersection graphs on Braids: Given a braid of partitions as in figure 5.3, one

can find a situation where the soft overlaps are not respected anymore. The family of

partitions from a braid consists of classes which may have multiple fathers with large

overlaps, which may not produce partition graphs, and would require further operations

to have a correspondence between the cuts of a braid and the Maximal independent sets

of its intersection graph. To repair this situation when one does not have a covering,

we basically reject this MIS by forcibly connecting disjoint classes, and recursing this

process for the tuplets of classes from the disjoint class cones. This operation basically

enforces the extraction of partitions and enforces them to be a covering of E.

We observe though that for a general stack of partitions, where small overlaps are possi-

ble between large classes, one would lose approximate good solutions by performing this

recursive correction of the intersection graph, though this is still up for debate since the
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class size are controlled by parameters in low-level segmentation algorithms. We leave

this problem of repairing the intersection graphs “open” for further study.

Another point to note is the similary in the dynamic program substructure between the

Breiman’s BFOS algorithm [21] and that of the of extraction of the MIS of an intersection

graph. Both have a recursive structure.

5.4 Max-Flow Min-Cut Analysis

In this section we briefly formulate the optimization problem over a graph, which is an

undirected forest/tree, corresponding to first the HOP, Further we also show what could

be the equivalent graph topology to model the optimal cut by min-cut in case of the

Braid of Partitions.

5.4.1 Graph Structure for HOP

The definition of a flow through G requires the data of a source and a sink. The

particular shape of a pyramid leads us to take for source the family A of all leaves, and

for sink the whole space E. In flows, capacities are often allocated to the edges, and

sometimes to the vertices. For the sake of comparison, in case of a hierarchy H, we will

take the nodes. Now, in the graph case, one wants to maximize the flow, whereas above,

both additive and sup-generated energies were the matter of minimizations. We must

choose, and from now on we decide to maximize the hierarchical energies, i.e. to invert

the ordering relations (e.g. in comparisons father/sons of the h−increasing case).

In a hierarchy, each leaf a is connected to the root E by a unique path [a, .., E], strictly

increasing, and different for each leave. For example, in Figure 5.4 we demonstrate a toy

example with sample energies shown on a dendogram. Each node is given a capacity,

which appears within it, as shown in figure. As long as two paths in this graph(tree)

have no common node, the flows they carry are independent, and upper bounded by the

lowest capacity along the portion where they are disjoint. When two such lines meet at

some node, e.g. the two paths [a1, .., S] and [a1, .., S] which meet in S in then one must

adopt some law for composing them, which is exactly what the optimal cut algorithm

performs in the dynamic program.

Consider for example the additive energies, which are the most similar to the flows over

a directed graph. In this additive case, the capacities ω(Ti} of the sons {Ti} of S are

added, and compared to ω(S). The min of
∑
ω(Ti} and ω(S) gives the provisional

capacity of the flow in S, and one pursues the climbing. At the end, the nodes of the
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Figure 5.4: Flow on Hierarchy: The diagram shows the min-cut for a planar graph(a
tree) representing the hierarchy. The source S is connected to all the leaves by an
infinite weight to force the flow through all leaves, while the sink is fixed at the root
of the hierarchy. The iterations of the augmenting flow method are shown, where the
minimum value on each path is subtracted from each node in the path, up till the point
where we obtain a cut that separates S and T . Each augmenting flow step saturates
necessarily one edge of the tree. The max-flow optimization is equivalent to the climbing

optimization.

optimal cut are those which are labelled 0, as depicted in Figure 5.4. Finally, we exactly

obtain a min-cut in the graph-cut sense, but presented in another formalism, and we

can state:

Proposition 5.5. Given an additive energy ω the optimal cut of a hierarchy H is

exactly the min-cut for sources located at all leaves and a sink located at the root, over

the weighted tree representing H.

A final point to note is that the energies in case of HOP, are additive in case of calculating

the max-flow. We will now extend this to a braid with a convenient graph decomposition.

5.4.2 Graph Structure for BOP

Let us consider a braid of partitions B with a monitor H included. For the sake of

demonstration we will consider a braid created by composing two hierarchies H1, H2.

Each class S ∈ B is associated with a node, while the inclusion relation S ⊆ ai, ai ∈ π(S)

led to the edges, representing the parent-child relationships.

In figure 5.5 we demonstrate an elementary example of a braid composed of two hier-

archies: H1 = {{E}{a1 t a2}} and H2 = {{E}{b1 t b2 t b3}}, where the monitoring

class is the {E}. As seen in the demonstration from having a source node S followed by

∞ nodes, provides us a graph that has a tree structure, over which the calculation for

min-cut corresponds exactly to the min-cut on the HOP.

In the case of BOP, aside the binary decision between a parent class and child classes, one

also needs a binary decision between the different child classes, in this case in figure 5.5
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Figure 5.5: Series arrangement of of partial partitions in the formulation of max-flow
on a braid of partitions.

between nodes {a1, a2} and {b1, b2, b3}. In case of extraction of cuts, this corresponds to

a disjunctive(OR) choice, while in case of the flow this becomes and conjunction(AND)

choice. This is demonstrated by placing these partial partitions in series configuration

under the monitoring parent {E}. In case of a max-flow situation this corresponds to a

saturation of either nodes {E} or {a1, a2} or {b1, b2, b3}.

Inference and Polytrees: In conclusion it also important to mention the seminal

work by Pearl J. [91], on probabilistic networks, and laid the foundation for modern day

graphical models. He was also the first to have introduced a more general graph topology,

namely the polytree, over which inference is tractable and can be calculated exactly. His

algorithm of Belief Propogation(BP) operates again by local message passing algorithm,

with different instances, namely the Forward-Backward algorithm, Viterbi Algorithm,

Sum-product algorithm.

Furhtermore, a polytree is a directed acyclic graph, where there is a single path between

any two given nodes of the graph, and where the first order markov-chain structure

is still usable for a causal and tractable decomposition of a joint distribution [65]. A

polyforest generalizes the polytree, as a family of disconnected polytrees. The point of

interest now ahead of us is to develop relations between inference algorithms like belief

propagation and the BFOS dynamic program. The local-global nature of such problems

enable the use of simple message passing methods to obtain a global optimum. The

future study is to perfom such studies on the braids.
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5.5 Summary

This chapter has basically provides a compilation of the different algorithms and graph

structures used in the domain of the hierarchical cuts problem.

Chapter contribution summary

I Algorithms to calculate a braid from a family of hierarchies, and extract the

optimal cut for given energy.

I Review on super-pixel and review of MWIS formulation of image segmentation

problem.

I Recalling the definition of “Partition Graphs”, which enumerates the parti-

tions from a HOP, transforming an intersection graph for BOP, into a Partition

Graph.

I Max-flow min-cut formulation over a tree corresponding to a HOP and over a

series of trees.
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Chapter 6

Conclusion

6.1 Thesis Contributions

A brief overview of contributions are provided below.

• The thesis introduces the concept of an energetic lattice which is a pair (H,ω),

of a hierarchy of partitions H, and energy ω. This structure enables the use of

axioms of a lattice, especially the in defining the existence and uniqueness of the

minima.

• We introduce the Braid of Partitions, that is richer structure in between, the all

possible sets of partitions and the hierarchy of partitions. This enables one to have

a larger search space than the HOP, and possibly better minimums on the energetic

lattice. Furthermore the braid allows for a multiscale overlapping segmentation

hypothesis over the image domain, thus providing its possible use in optical flow

and achieving better segmentations by structuring segmentation stacks from low

level super-pixel segmenters. The structure of energetic lattice, which is valid for

braids and uniquely for them, leads to various results of optimality on braids.

• The thesis generalizes the dynamic program used first in pruning decision trees by

Breiman et al. [21], and later by Guigues et al. [13, 47, 100] for non-linear energies

with the h-increasingness property.

• We provide the scale-incresaingness property energy ωλ in the energetic lattice,

and extend Guigues et al.’s [47] causality condition of monotonicity to non-linear

energies.

• The thesis introduces for the problem of constrained optimization on partitions,

the notion of inf-modularity. This condition plays a role similar to that of subad-

ditivity, for set valued functions [12], while operating on partial partitions.
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Hierarchy H
of segmentations

Energy ω(π, λ) =
ωϕ(π) + λω∂(π)

Energetic Lattice
Πω of cuts

Singularity

Ordered set of
Minimal Cut

Scale
increasingness

h-increasingness

Constraint
ωδ ≤ K

Minimal
Cut π∗

Figure 6.1: Chain of ideas for yielding a minimal cut in a hierarchy or a braid. (axioms
in rounded boxes).

• We study the meaning of optimality in the Lagrangian Multiplier methods used by

Guigues et al., Salembier et al., [47, 100], and demonstrate how it is a Lagrangian

Relaxation, of the original hard constrained optimization problem on the HOP,

and study its implications.

• We define a local Haussdorf based proximity measure between any two partitions.

This is introduced to solve the problem of extracting a partition from a hierarchy

H, that is closest to a ground truth partition G, where G, h correspond to an input

image. This local-global problem enables the application of the energetic lattice as

well as the dynamic program with infimum composition. We also study the laws

of composition for composition of ground truth partitions.

• In an apparently disjunct contribution, we show how to construct a hierarchy of

partitions using a finite set of Jordan curves partitioning the image domain, and

introducing a lattice structure over it. The method derives but delineates from the

study on ground truth energies, where the lattice is moved from partial partitions

to the family of jordan curves. With the lattice structure we introduce the net

opening that extracts the smallest set of jordan curves, and the numerical opening.

In the problem of extracting a proximal partition from a hierarchy w.r.t the ground

truth, we calculate a new hierarchy, including the proximal partition, by ordering

the set of Jordan curves, by the distance function of the ground truth.

To have a global picture of the progression of ideas with the energetic lattice and the

lagrangian approach refer to Figure 6.1, and Figure 6.2.

6.2 Applications and Future perspectives

We shall briefly provide perspectives on how Braids can be used in the domain of hy-

perspectral image segmentation, when working on spatial-spectral methods [118] and
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arg minπ∈Π(E,H) ωϕ(π)
subject to ω∂(π) ≤ C

Lagrangian Multiplier [47, 100]
minωϕ(π) + λ(ω∂(π)− C)

Energetic Lattice
Πω(E)

Sub/Super-additivity
of ω∂/ωϕ

Singularity
Inf-Modularity

Family of
Minimal Cuts Π∗(E)

Figure 6.2: Two models to formulate the constrained optimization problem. The
Lagrangian multipler’s method minimizes the Lagrangian of the constrained optimiza-
tion problem for each feasible λ, while the energetic lattice defines an order on the
lattice structure of partitions. The infimum of the energetic lattice, in this case for
the Lagrangian function ω(π, λ) = ωϕ(π) + λω∂(π), leads to the ordered set of optimal
cuts. The conditions on the energy are presented in rounded boxes, so as to obtain
a minimum on the HOP for both methods. One can see the counterpart conditions
of the Lagrangian Multipliers method, are properties of functions needed to achieve a
ordering of energies on the HOP partition strucure. Though its important to note that
the energetic lattice can be formulated for the lagrangian linear case, while the axioms
of h-increasingness and scale-incresingness, generalize subadditivity and superaddivity.

GIS(Geographic Information System) based spatial segmentation problems, for example

in Kurtz et al. [66].

Project with UMR ESPACE: The methods studied in this thesis have already

been applied to problems in (Geographic information systems) GIS, in particular to

spatio-temporal and morphological analysis population the region of Provence-Alpes-

Côte d’Azur (PACA) south of France. This work is in collaboration with Christine

Voiron and the team at UMR ESPACE, Nice Sophia Antipolis. Problems purview in-

clude population density based hierarchical segmentation [14], multivariable hierarchical

segmentations, autoroute proximity based segmentation and other problems involving

hierarhical spatial structure and different types of constraints.

6.2.1 Multi-segmentations

Satellites and planes provide sequences of images in different wave bands. If there are

many, like in airborne images, we suppose that they have been reduced to their first

principal components. Each of these significant images is segmented individually. This

results in the hierarchies H1 = {π1
1...π

1
n} ... Hk = {πk1 ...πkn} which are distinct but
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with a common base of leaves, and a same number of levels. How to synthesize these

hierarchies, and to extract from the series of Hk a unique (constrained or not) optimal

cut ? Introduce the refinement supremum H = ∨Hk of the Hk , i.e. the hierarchy H

whose section π at each level is the refinement supremum of the πk at the same level.

The family {Hk} of all sections of all Hk turns out to be a braid of monitor H. At point

x the minimization processing will result in the class among the Sk(x) which is locally

the less energetic. We have already seen the work of Chanussot, Angulo, Santiago and

Valero et al. [6, 46, 118] on how one enters the multidimensional case.

6.2.2 Thematic partitions

We now consider a partition of the Euclidean plane into thematic classes, like the GIS

classification in the P categories of water, forest, cultures, habitations, soil, etc... Each

class is given one “color” taken among the P categories. As R2 is topological, one can

speak of frontiers and of adjacent classes. A matrix M(p, q) = [m(p, q)] of similarities

between adjacent classes is given. Two classes Sp and Sq merge if they are adjacent and

if their similarity is higher or equal to [m(p, q)]. The similarity of Sp and Sq is an energy

which can include physical parameters (nature of the soil, slope, etc.) and geometrical

ones (length of the frontier, simplicity of the union Sp ∪Sq, distance to a highway, etc.).

The merging of each p → q of the P categories leads to 2
(
P
2

)
partitions. They form a

braid B because one can construct a monitor hierarchy H by means of the Jordan net

opening developed in Chapter 5. The maximal cut of this braid is a partition which

optimizes the similarities, a processing which thus results in a clustering.

6.2.3 Thematic prediction

We continue which the previous situation, by adding the time dimension. We start from

the partition of a region Z in P categories, and we want to estimate the partition of

the same region at time t′. The classes are the same, but their categories may change

between t and t′. One can urbanize a class initially devoted to agriculture, or extend

former soils to forest, etc. A transition matrix A = [a(p, q)] has been estimated from

other sources, and is given. This matrix is a priori different from the previous one M .

A class Sp of category p is changed into Sq according to an energy associated with the

categories of the neighbors of Sp and with matrix A. It lead to
(
P
2

)
partitions which

form a braid B, as previously. The maximal cut of B is then the best estimator w.r.t.

the energetic choices and the matrix A.

174



CHAPTER 6. CONCLUSION 175

Similar situations occur in binocular vision, or in motion estimation. In binocular vision,

for example, an energy is associated with the lateral shifts, and the classes of the optimal

cut provides zones of the space considered as located at the same depth.

6.2.4 Combination of earth images

When they focus on a same geographical zone Z, different sensors produce maps which

indicate various informations, and with different accuracies. The same as for situation

c) (thematic hierarchies) may be said here. The optimal cut of the braid provides here

the optimal synthesis of the maps, w.r.t. the chosen criteria.

These problems have not been studied by braids yet they all can be approached by the

braid theory, which of course does not excludes other approaches.
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cuts which are the set of partitions that satisfy a constraint of ω∂(π) ≤ C,
which here for demonstration are cuts with number of classes no greater
than 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Minimal CCO cut. The + classes have ω∂ > C, the − classes have ω∂ ≤ C. 89

3.1 First row: Initial image and Saliency function corresponding to hierarchi-
cal watershed flooding [32]. Second Row: Optimal cuts by using variance
of luminance(left), chrominance(right). . . . . . . . . . . . . . . . . . . . . 99

3.2 Optimal Cuts for texture using variance of chrominance for scale λ = 100:
Left, input Image, middle and right, cuts for parameters at µ = 1012 (low
uniformity) and µ = 1014 (high uniformity), in Eq. 3.8. . . . . . . . . . . 99



3.3 The first row shows an input image, with two ground truth partitions cor-
responding to the image, from the Berkeley dataset. The bottom row con-
sists of a sequence of thresholds of the Ultrametric Contour Map(UCM)
segmentation hierarchy. The problem now consists in extracting a proxi-
mal partition in the hierarchy that is closest to one of these ground truth
partitions. Further how do we compose when we have multiple ground
truth partitions, and how do we compare hierarchies w.r.t a single ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Example demonstrating two partitions π1 and π2, where one of them
could be a ground truth segmentation while the other being a machine
segmentation. Figure demonstrates the different possible configurations
of refinement, braid and overlaps of classes. . . . . . . . . . . . . . . . . . 103

3.5 GT’s corresponding to an input image. This demonstrates how the human
experts in this case have drawn different scales of details in the scene. All
scales are not present in no single GT partition. This as described well
across literature is due to the ill-posedness of the segmentation problem.
The OIS averages the results of choosing the right scale of partition from
the UCM across various GTs to evaluate the segmentation hierarchy. We
will use instead an inf-composition to extract the proximal partition. We
remark the inherent braid structure in such cases. . . . . . . . . . . . . . . 105

3.6 Haussdorff distance Assymetry: Smallest disc dilation of X that contains
Y is drastically larger than theat of X to contain Y, thanks to a the
difference in convexities of the shape. The same situations occur when
dealing with classes of a partition. . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Energies ωG(S), θG(S) for each class S in a segmentation, defined w.r.t
class from a ground truth partitionin red. The composition of these en-
ergies decid the local distance measure introduced and minimized. . . . . 109

3.8 Row 1: ωGT2(S), Row 2: θGT2(S), Row 3: ωGT7(S), Row 4: θGT7(S). Fig-
ure shows the different half haussdorf proximity functions ω(S) and θ(S)
for each class from different partitions in a hierarchy. The two ground
truhs chose are of different scales. The gray scale value 0 corresponds to
closest while 255 corresponds to farthest. Ground truth and associated
distance function on left, energy values over 6 different partitions from the
hierarchy on its right. One can already get a quick idea of what the dy-
namic program would extract an a minimal cut looking at the individual
values. One can see that the scale of the ground truth partition affects
the energy associated with classes of the hierarchy of segmentatations.
What’s left is to obtain a good composition. . . . . . . . . . . . . . . . . . 110

3.9 Ground truth partitions, and corresponding optimal cuts, for energies
ωG, θG and for composition by sum ωG + θG. The input hierarchy is the
UCM from the Berkeley dataset, consisting of 800 level binary partition
tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.10 Two ground truths and their union are shown, with their corresponding
optimal cuts, for the energy θG + ωG. The composition over different
ground truth sets is achieved by infimum as shown. . . . . . . . . . . . . . 113

3.11 a) Leaves partition b), c) and d) Conditional λ-cuts for λ = 0, 10, & 80. . 114



4.1 Saliency Function example: First image is an input image from Berke-
ley data base. Second image is the corresponding Ultrametric Contour
Map(UCM) which represents a hierarchy of partitions. Third image shows
the corresponding altitude map for the UCM. Here we see that each arc
in the saliency function separates different components at different alti-
tudes. This third image is oriented 180 degrees off to better render the
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Examples of Jordan Curves. The Jordan curve tessellates the space, with
one bounded interior component or face F and an unbounded exterior
component S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 One can suppress the contour in the interior of region F1, while no in-
creasing the energy ω(π) of the partition by F1, F2. . . . . . . . . . . . . . 123

4.4 An elementary Jordan net N0, A set X of arcs and Jordan curves, and
their net openings γ(X). It is important to note that the number of
connected components of white pixels don’t change after a net opening
|γ(X)|CC = |X|CC . γ(X) removes two types of arcs: open arcs and arcs
which are not normal [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Initial Image 25098 from Berkeley database, leaves given by lowest(finest
partition) threshold of Ultrametric contour map(UCM). The leaves here
represents the initial finite net N0. . . . . . . . . . . . . . . . . . . . . . . 126

4.6 Initial Image 239096 from Berkeley database, Saliency function s: Ultra-
metric contour map(UCM), Ground truth partition G, Inverted distance
function g. The inputs here we consider are the saliency function s and
the inverted distance function g. . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 The figure demonstrates how the image I produces a meaningful gradient
function in the xy directions ∇xI ∪ ∇xI, using the image values. The
label image L on the other hand does not depend on the actual values in
the gradient (∇xL depends on the labeling L which can be arbitary) but
just the existence of the non-zero gradient value. This can be seen as a
indicator function of the gradient function 1(∇L). . . . . . . . . . . . . . 130

4.8 Input function g on a simple toy Jordan net, The net opening γ(g) and
their level sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9 Complement of input function g′ = max(g) + 1 − g, Intermediate result
showing the opening of inverted function γ(g′), and finally for the pseudo
closing we use another iteration of the net opening: φ(g) = γ(max(γ(g′)+
1− γ(g′), with level sets of g′ and φ(g). The opening of the complement
is a closing in the space of arcs but not that of the Jordan nets. . . . . . . 131

4.10 Lack of upper bounds by closing. . . . . . . . . . . . . . . . . . . . . . . 134

4.11 Dual Closing: The thickening τ is not increasing. g and g′ are binary or
two level saliency functions. We have τ(g) ≥ τ(g′) though g ≤ g′. . . . . 135

4.12 a) filter γϕ(g), i.e. the closest saliency below ϕ(g), b) thickening τ(g). . . 135

4.13 Toy example showing down-sampling and the different stages of opera-
tion to achieve the net opening. One important different w.r.t [86] is that
here we have boundary operator that simply calculates the non-zero gra-
dient contours, since the labeling of the components does not produce an
ordering dependent on the gradient of the image, and furthermore can
be arbitrary. This double resolution to separate cells in discrete topol-
ogy is the well known Khalimsky topology [76], further one can find the
Khalimsky’s digital jordan curve theorem in by Kiselman [63]. . . . . . . . 137



4.14 Inverse distance function gGT4 = 1−d4(GT4), Transformed saliency γ(s+
gGT4), Point distance function gpoint, Transformed saliency γ(s+ gpoint). . 137

4.15 Hierarchy fusion: Here we fuse two hierarchical structures by introducing
a distance function d∑ which is unique(given its leaves) for every saliency
function s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.16 Scaling space with different distance functions: Here we demonstrate
how the inner diamond and the circle get separated when using the (4-
connection d4) city-block distance function, while the euclidean (dball)
distance function reaches them at the same scale. This produces two dif-
ferent saliency functions and thus hierarchies: γ(d4 + π0) (with 2 levels)
and γ(dball + π0) (with single level). . . . . . . . . . . . . . . . . . . . . . 139

4.17 Toy example demonstrating Hausdorff distance ordering. First case with
blue circle demonstrates a symmetrically aligned pair circular contours(black,
blue), the second case demonstrates an asymmetrically aligned pair of cir-
cular contours(black, red). Aside the arrows we calculate the infimum of
radius of dilation for one contour to cover completely, the other, for ex-
ample, the radius of dilation of set in blue to cover set in black is 1, while
radius of dilation for set red to cover set in black is 2. The third figure
demonstrates how the two circles are reordered, by associating them with
the inverse of the Hausdorff distance between the circles. . . . . . . . . . . 141

4.18 This example demonstrates 3 scales of ground truths and the correspond-
ing, Hausdorff distance ordered saliency functions. The base Jordan net
is extracted from the leaves/finest level of the input saliency function.
Partitions corresponding for each ground truth at a threshold(level) of
350 is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.19 This toy example demonstrates a partition N0 with three ground truths
partitions. Two of the three ground truth lines overlap and is represented
in red, while the single ground truth in blue. In such a case one produces
the saliency function weights as seen. This is due the composition by
addition that weights a partition contour if its proximal to larger number
of ground truths (here overlapping, but in general can span space at
different locations) than if it is simply close to a single ground truth.
This also in contrast produces a different ordering compared to the ∧-
compositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.20 Initial image with (a,b,c,d,e) representing five different ground truths,
with images (g,h,i,j,k) corresponding inverted distance functions of ground
truths. While (f) shows the sum of ground truths, and (l) its inverted
distance function. We see different contours of the lizard in the image
that are reinforced. Further more the ground truth partitions in this case
are not simple refinements, and thus validating our use of a composition
by addition. Corresponding net openings are demonstrated in 4.21 . . . . 145



4.21 Figure shows initial leaves partition N0 with three ground truths parti-
tions, and the different net openings possible. The last saliency demon-
strates the composition by addition that weights, where higher weight is
given to a partition contour, if its proximal to larger number of ground
truths (here overlapping, but in general can span space at different lo-
cations) than if it is simply close to a single ground truth. Composition
by addition (eqn 4.13) also in contrast produces a different ordering com-
pared to the ∧-compositions (eqn) 4.12). Please refer to figure 4.22 to
view the different scales that can be extracted using the M-measure from
equation(4.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.22 The plot demonstrates the M measure for the saliencies in figure 4.21 gen-
erated with different inverse distance functions of ground truth(in figure
4.20), saliency by Inf-composition and composition by addition. As we
can see the inf and sum composition form the bounds of variation of the
M -measure which not only provides a structural measure of how many
children are regrouped by the parent level in each hierarchy but also the
number of levels in the hierarchy. . . . . . . . . . . . . . . . . . . . . . . 147

4.23 Evaluating with M : The first row shows 3 different distance functions,
dGT2, dGT4, dptwith their corresponding ground truths on the top right
corner of the images. π0 is the leaves partition on which the distance
functions will reorder the arcs. In the bottom row we have the trans-
formations γ(π + dGT2), γ(π + dGT4), γ(π + dpt) representing new the hi-
erarchies(saliency functions). The plot on the bottom right displays the
M measure at different levels of the hierarchy. The maximum number
of levels in these hierarchies is bounded by the maximum value of the
distance function producing a partition. . . . . . . . . . . . . . . . . . . . 148

4.24 Net opening over the intersection of two finite Jordan nets N,M . This
example demonstrates the use of the net opening operator to extract from
the intersection of two Jordan nets (which is not necessarily a set of Jordan
curves) the largest Jordan net in the base net N0. Since we work on pixel
domains, one can consider the finest net N0 to be the one separating all
pixels. This operator will be used to create braids while recomposing
partitions from different hierarchies. This a very simple operator, and it
helps in combining partitions which don’t share a common leaf partition
or Jordan net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.25 Calcuating the monitor partition of two partitions using the net opening.
The partitions (a), (b) are extracted from watershed flooding by attributes
of area and volume respectively [32]. One can note that the watershed by
different attributes are not hierarchical. (c) is the intersection of contours
between the two partitions, (d) gives the net opening of the intersection,
resulting in the monitor partition. (e) shows a magnified view of the
contour in the intersection set, where the area and volume floodings have
small difference, resulting in a fissure in the intersection set. This leads
to a loss of a large class, in the corresponding net opening. We calcuate
the monitor of the braid formed in such an event demonstrated in figure
1.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



4.26 Figure shows, Leaves partition πmin 1 in watershed saliency by area, πmin 2,
corresponding partition from watershed saliency by volume. And finally
πmin as described in figure 1.7 in chapter 1, is the net opening of the
intersection πmin 1 ∩ πmin 2. The πmin of the braid and finest partition
picked from watershed saliency πmin 2 by volume are the same, thought
this might not be the case generally. . . . . . . . . . . . . . . . . . . . . . 153

5.1 For the given graph, the maximal independent set of vertices are {{a, c}, {b, e}, {d, f}}.
Addition of any other vertex would lead to an inclusion of an edge between
the MIS vertex set. This characterizes its maximal nature. . . . . . . . . . 162

5.2 Typical Intersection Graph for a hierarchy of partitions H. The inde-
pendent sets of such an intersection graph enumerates all the cuts in
the hierarchy H: {π1(E) = l1, l2, l3, l4, l5, π2(E) = a1, l4, l5, π3(E) =
l1, l2, l3, a2, π4(E) = a1, a2, π(E) = E}. This graph codes the intersec-
tion of classes in the hierarchal structure shown beside it. . . . . . . . . . 165

5.3 The MIS of the intersection graph corresponding to family of partitions
from a Braid are shown in figure. They are {(a1, a2), (b1, b2), (a1, b2), (E)}.
Node pair (a1, b2) form a MIS but does not form a cover of the space, since
if AtY 6= E. Consequently the intersection graph is not a partition graph
for the class family {a1, a2, b1, b2, E}. This is due to the missing edge
shown in red, which when added transforms the graph in to a partition
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Flow on Hierarchy: The diagram shows the min-cut for a planar graph(a
tree) representing the hierarchy. The source S is connected to all the
leaves by an infinite weight to force the flow through all leaves, while the
sink is fixed at the root of the hierarchy. The iterations of the augment-
ing flow method are shown, where the minimum value on each path is
subtracted from each node in the path, up till the point where we obtain
a cut that separates S and T . Each augmenting flow step saturates nec-
essarily one edge of the tree. The max-flow optimization is equivalent to
the climbing optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.5 Series arrangement of of partial partitions in the formulation of max-flow
on a braid of partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1 Chain of ideas for yielding a minimal cut in a hierarchy or a braid. (axioms
in rounded boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Two models to formulate the constrained optimization problem. The
Lagrangian multipler’s method minimizes the Lagrangian of the con-
strained optimization problem for each feasible λ, while the energetic
lattice defines an order on the lattice structure of partitions. The in-
fimum of the energetic lattice, in this case for the Lagrangian function
ω(π, λ) = ωϕ(π) + λω∂(π), leads to the ordered set of optimal cuts. The
conditions on the energy are presented in rounded boxes, so as to obtain a
minimum on the HOP for both methods. One can see the counterpart con-
ditions of the Lagrangian Multipliers method, are properties of functions
needed to achieve a ordering of energies on the HOP partition strucure.
Though its important to note that the energetic lattice can be formulated
for the lagrangian linear case, while the axioms of h-increasingness and
scale-incresingness, generalize subadditivity and superaddivity. . . . . . . 173
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ferent authors work, related to the study of extract of optimal cuts, the
monotonicity of ordering of the cuts based on λ, the uniqueness of these
solutions of a given constraint, as well as whether the multiplier is chosen
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Dec 2013. pages [18]
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Abstract

Hierarchical segmentation has been a model which both identifies with the cosntruct of
extracting a tree structured model of the image, while also interpretting it as an opti-
mization problem of the optimal scale selection. Hierarchical processing is an emerging
field of problems in computer vision and hyperspectral image processing community, on
account of its ability to structure high-dimensional data.

Chapter 1 discusses two important concepts of Braids and Energetic lattices. Braids
of partitions is a richer hierarchical partition model that provides mutliple locally non-
nested partitioning, while being globally a hierarchical partitioning of the space. The
problem of optimization on hierarchies and further braids are non-tractable due the
combinatorial nature of the problem. We provide conditions, of h-increasingness, scale-
increasingness on the energy defined on partitions, to extract unique and monotonically
ordered minimal partitions. Furthermore these conditions are found to be coherent
with the Braid structure to perform constrained optimization on hierarchies, and more
generally Braids. Chapter 2 demonstrates the Energetic lattice, and how it generalizes
the Lagrangian formulation of the constrained optimization problem on hierarchies.

Finally in Chapter 3 we apply the method of optimization using energetic lattices to the
problem of extraction of segmentations from a hierarchy, that are proximal to a ground
truth set. Chapter 4 we show how one moves from the energetic lattice on hierarchies
and braids, to a numerical lattice of Jordan Curves which define a continous model of
hierarhical segmentation. This model enables also to compose different functions and
hierarchies.

Keywords: Hierarchical segmentation, Lagrangian Multipliers, Lattice optimiztaion,
Mathemtical Morphology.

Résumé

La segmentation hiérarchique est une méthode pour produire des partitions qui représentent
une même image de manière de moins en moins fine. En même temps, elle sert d’entrée à
la recherche d’une partition optimale, qui combine des extraits des diverses partitions en
divers endroits. Le traitement hiérarchique des images est un domaine émergent en vision
par ordinateur, et en particulier dans la communauté qui étudie les images hyperspec-
trales et les SIG, du fait de son capacité à structurer des données hyper-dimensionnelles.

Le chapitre 1 porte sur les deux concepts fondamentaux de tresse et de treillis en-
ergétique. La tresse est une notion plus riche que celle de hierarchie de partitions, en
ce qu’elle incorpore, en plus, des partitions qui ne sont pas embôıtées les unes dans les
autres, tout en s’appuyant glolalement sur une hiérarchie. Le treillis énergétique est
une structure mixte qui regroupe une tresse avec une énergie, et permet d’y défninr des
éléments maximaux et minimaux. Lorsqu’on se donne une énergie, trouver la partition
formée de classes de la tresse (ou de la hiérarchie) qui minimise cette énergie est un
problème insoluble, de par sa complexité combinatoriale. Nous donnons les deux con-
ditions de h-croissance et de croissance d’échelle, qui garantissent l’existence, l’unicité
et la monotonie des solutions, et conduisent à un algorithme qui les détermine en deux
passes de lecture des données.

Le chapitre 2 reste dans le cadre précédent, mais étudie plus spécifiquement l’optimisation
sous contrainte. Il débouche sur trois généralisations du modèle Lagrangien. Le chapitre
3 applique l’optimisation par treillis énergétique au cas de figure où l’energie est intro-
duite par une “vérité terrrain”, c’est à dire par un jeu de dessins mauel, que les partitions
optimales doivent serrer au plus près.

Enfin, le chapitre 4 passe des treills énergétiques à ceux des courbes de Jordan dans
le plan euclidien, qui définissent un modèle continu de segmentations hierarchiques. Il
permet entre autres de composer les hiérarchies avec diverses fonctions numériques.

Mot Clé: Segmentation hiérarchique, Multiplicateurs de Lagrange, Optimisation dans
les treillis, Morphologie mathématique.
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