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Hierarchies are a powerful tool for dimensionality reduction and has been in a area of intense
research for the past decade. In the domain of image segmentation we have seen it applied to
hierarchical segmentation with its prominence in the Berkeley dataset in the form of the Ultrametric
Contour Map [2]. Hierarchies or trees are also an efficient model in the domain of statistical learning
theory, development due the seminal work of Breiman [4] on classification and regression trees
(CART). CART was later developed into the domain of source coding [11] for quantizers and also
in the domain of segmentation by pruning partition trees [10]. In a related work on describing an
hierarchy-energy dependent image descriptor called A-cuts, Guigues [6] provides a way to calculate
an optimal hierarchy of partitions. The thesis begins with this problem of selection an optimal
cut by dynamic programming and develops the various conditions on the energy and the space of
partitions to obtain a tractable solution.

We can quickly summarize the optimization problem on the space of hierarchies as follows:
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where 7 is any cut of H (partition composed of subsets from the hierarchy H, II(E, H) is the
set of all possible cuts/partitions extractable from the hierarchy H, w,(S) is the objective function
or energy, while wy(S) is the constraint function, while S is any element of a partition in H. C'is
a constraint value imposed on a cut wy(m) < C. We are searching for the least energetic cut from
a hierarchy if we ignored the constraint. For the constrained problem we resolve it by considering
the Lagrangian like in [10].

1 Braids and their minimization

1.1 Dynamic Programming

Dynamic program consists in solving a structured complex problem by decomposing it into smaller
simpler subproblems. These subproblems require to be overlapping in nature, such that a solution
to a subproblem is calculated only once and serves to solve a larger subproblem. Furthermore
this partial solution when aggregated with others, produces a global solution. The aggregation is
quite often has a successive approxi- mation interpretation. The algorithm will implicitly have to
solve subproblems appearing at higher scales before some lower scales. This means, some nodes
appearing early lower down in the hierarchy might be part of a global solution. The optimal cut in
[4], [10], [6], is calculated by aggregating local optima. The local optimum at class S either choses
the parent {S}, or the disjoint union of the optimums over the its children as shown in equation 2.

() = {{S}, if w(S) < comp(w(m*(a))),a € 7(S)

Uaeﬁ(s) m*(a), otherwise

(2)
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Figure 1: Space E is partitioned into leaves {a,b,c,d, e, f}. The family By = {m, m2, w3} forms a
braid, whose pairwise supremum is indicated on the dendrogram. Note that 71 (X ), m2(X) have a
common parent X, but m(Q),73(Q) a common grand parent ). However the family 7, U By is
not a braid since 73 V m, gives the whole space E.
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1.2 Extension to a new family: Braids

We prove in the thesis that the dynamic program in [4], [10], [6], is in fact valid across a larger
family of partitions, the braids. A braid is a family of partitions B, where the pairwise refinement
supremum of any two elements is a cut of in some hierarchy II(F, H). This leads to the more formal
definition:

Definition 1 Let II(E) be the complete lattice of all partitions of set E; let H be a hierarchy in
II(E). A braid B of monitor H is a family in II(E) where the refinement supremum of any pair of
distinct partitions w1, 7o € B is a cut of H, other than {E}, that is in, II(E, H) \ {E}:

Vmy,m € B :>7T1\/7T2€H(E,H)\{E} (3)

In figure 2 we show a simple example how a hierarchy is augmented with more partial partitions
to produce a braid of partitions. In figure 1 we demonstrate a simple example of a braid family
with the dendrogram corresponding to its monitor hierarchy. As we can see the classes of partitions
w1, mo are neither nested nor disjoint, and basically correspond to different segmentation hypotheses
that exist in the stack of segmentations. The set of all cuts of a braid B is denoted by II(E, B).
A braid may also contain its monitor H, though this is not necessary. On the other hand, any
hierarchy is a braid with itself as monitor. A braid cannot be represented by a single saliency
function, except when it reduces to a hierarchy whose classes are connected sets.

1.3 Compositions for DP: h-increasingness

h-increasingness is a property of energies, which preserves the optimal substructure in extracting
the minimal cut so that one can use a dynamic program to solve it. It states that the ordering of
energies is preserved under concatenation of partial partitions (Figure 4).

Definition 2 (h-increasingness) Let m1(S), m2(S) be two different p.p. of the same support S € E,
be a family of disjoint supports over E. Let my be any partial partition in D other than w1 (S), w2(S).
A finite singular energy w on the partial partitions D(E) is h-increasing when for every triplet

{m1(S), m2(S), m0} one has:

w(m(S)) < w(ﬁg(S)) = w(m(S) (] 7T0) < w(m(S) LJ 7T0) (4)
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Figure 2: Comparing hierarchies and Braids: demonstration of partition structure. Hierarchies
are characterized by two types of refinements: Parent—Children (division/fragmentation) and
children—parent (fusion/merging). The braid introduces a third type of refinement operation
which conserves the parent, namely the hierarchical re-merging or reorganization. This operation
helps keep the substructure required to solve the optimal cut problem while providing a richer space
to partitions to search for an optimum.
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Figure 3: Top: Ultrametric contour map [2], Bottom: braid of partitions. Braids of partitions
were produced from multiple instances of random marker based stochastic watershed, with same
number of regions. The supremum or monitoring partition, corresponding to these unordered family
of partitions is shown. Braids help reorganize partial refinement between partitions.
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Figure 4: Left: h-increasingness for HOP (top) versus BOP (bottom). Right: An elementary step
of the dynamic program on a partial braid over a support S. The optimal partial partition is the
minimum across the partial optima and S, i.e. w(S),w(7}(S)),w(75(S)).

In implication (4) when the inequality is made strict, we have what we call strict h-increasingness.
h-increasingness was first introduced in [7], which generalized the condition of separable energies of
Guigues [6]. Separability in equation (2), is obtained by replacing comp(-) by a sum of the energies
of the constituent classes of a partial partition, to calculate the energy of the partial partition. We
can also perform a composition by supremum [12], [13].

Both laws are indeed particular cases of the classical Minkowski expression

- [gwmﬂ : (5)

which is a norm in R" for @ > 1. Even though over partial partitions D(E), it is no longer a norm,
it yields strictly h-increasing energies for all « €] — oo, +00|:

1.4 Modeling the minimum of DP: Energetic Lattice

Given the problem of finding an optimal cut, we review separately the requirement of obtaining
a unique solution. On the HOP, this has been enforced by many authors [4], [10], [6], [13], [1]
as a partition which is either the largest or the smallest, amongst optimal cuts with the same
energy. A hierarchy can have multiple cuts with the same minimal energy, and to ensure a unique
solution we use the general condition of singularity, which requires that any energy w defined on
the partial partitions of a braid B be such that the energies w(m(S)) of all p.p. m(S) of H are either
strictly smaller, or strictly greater, than the energies of their supports S: V 7(S) € II(S),w({S}) <
w(m(S))} or w({S}) > w(w(S5))}, [9], [8].

Consider now two partial partitions 7(S), 7’(S) over support S, which is also their refinement
supremum S = 7(S) V 7'(S) (see Figure 5). One may assess that partition m; to be less energetic
than 7o for an energy w i.e. m =<, w2 when in each class of supremum 7 V 7y the energy of the
partial partition of m; is smaller or equal to that of ms.
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Figure 5: An example of energetic ordering: We have m <, 7’ since in each class of m V 7/, the
energy w of 7 is less than or equal to that of 7’.

T Swme e {SemVm=w(m N{S} <w(mMN{S})} (6)

The relation =<, called energetic ordering, is an ordering relation for all singular energies w, if and
only if the family II is the set II(w, E, B) of all cuts of a braid B [8].

2 Conclusion

The thesis generalizes the dynamic program used first in pruning decision trees by Breiman et al.
[4], Salembier [10], Guigues et al. [5, 3] for non-linear energies with the h-increasingness property
by firstly introducing the braids of partitions to model the solution space, secondly the h-increasing
energies to generate valid energies that preserve the DP substructure, thirdly the energetic lattice
structure, that models the minimum obtained by the DP and explicating its local-global structure.

In the second part of the thesis we use the Everett’s theorem to show that A-cuts in case
of Guigues [6], and optimal prunings of Salembier [10] provide only an upper-bound on minimal
objective energy. This was explicated further by the dependence of the constraint function values
on the Lagrangian multiplier, and also the possibility of the non-existence of multipliers for certain
constraint values and vice versa. The constraint function values were shown to be lattice structured
and not varying continuously. This motivated the use of an energetic lattice framework. This gave
us two ways to enforce of a constraint providing us new models of constrained optimization on
hierarchies and braids.

Lagrangian Minimization model enforces a numerical constraint on energy, without referring
to the partition structure. The Energetic lattice generalized the Lagrangian model while working
in an extended space of braids. Secondly a lattice structured Lagrange Minimization and a Class
dependent constraint models were introduced, which enforce the constraint in the form a partition,
by using the energetic ordering. This does not involve any numerical constraint function, but one
that is based on the energetic lattice. [8]
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