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NAVYA ML TEAM

Deep learning modules on camera and LiDAR

ML team at Navya principally works on: 1

Q Camera:

= 2D Object detection and drivable zone segm. (2D-OD, MTL) Alexandre Almin . Thomas Gauthier
m Traffic light detection and relevancy (TLDR)
= 3D Monocular object detection (3D-MOD)
Q[ iDAR:
= | arge scale semantic segmentation on pointclouds B Ravi Kiran Leo Lemarie Anh Duong
m |nstance segmentation on pointclouds

@ Semantic Navya Dataset

navvya
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@ \\hat is a data augmentation (DA)

m Categories of data augmentation (classification, detection, segmentation)
m Theoretical frameworks for DA

Q@ Geometry preserving 2D-DA for 3D monocular detection

= DA for 3D monocular object detection
m Self supervision pretext tasks for 3D monocular detection
m Evaluation on KITTI 3D detection dataset

@ DA for data redundancy in Active learning (AL) pipeline

m Semantic segmentation on pointclouds
= Building an AL pipeline for mining informative samples
m Evaluation on Semantic-KITTI dataset

: Nnauvvya
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https://imgaug.readthedocs.io/en/latest/

- el
S ] .-: et D A | A Al |< ; I\/l E N | A I IO N __originalimage __Huesaturationvalue _ Channeishufle
-,y y - ™ - e = - il >y > . T 3 ' e 2P »
--"‘l.-'\-f-ﬂ'—-"-,.‘- === o b o ¥, DA
_____ A - - = = o ) N N }
- T R e T T — . . B : o
e e e =T " am 3 b g :
L - = « B I
- = ‘_.-' — - . 4 v 1
i A Briefreview

@ Generates augmented 1/0 pairs

m Performs model regularization & reduce the effect of overfitting in
low dataset regime

= |ncreases the diversity of small datasets

= Fundamentally models invariance/equivariance to real world
transformations that generate samples of a dataset

@ |mage vs pointcloud augmentations

m Representations:
* Images conserve an inherent matrix representation

« Pointclouds are sets with arbitrary input domain size - a
= |nstance transform:
» Objects in pointclouds are separable from their background,
enabling for easy 3D transformations (rotation translation). 2
* Though this does require the transformation to account for " ;':: ; ‘ ..o

change in pointcloud density with change in
distance/orientation

3 3 & :
Original A ER
& } 5 Ve W e ¥
W
a8 e
Frustum Dropout Frustum Noise Random Rotation Random Drop Laser Points


https://blog.waymo.com/2020/04/using-automated-data-augmentation-to.html
https://albumentations.ai/docs/
https://imgaug.readthedocs.io/en/latest/
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= WHY DATA AUGMENTATIONS WORK

YT Reviewing theoretical understanding

@ DA model invariances to represent data Anselmi, et al. 2016

m Translation invariance already baked into CNNs due to convolutions
m Rotations, Scaling, color transformations...

@ DA connection with kernel theory Dao, Tri, et al 2019

m DA augmentations are seen as a Markov process with transitions defined per sample

@ DA are represented within a group G Jane H. Lee et al 2020

m Augmented sample distribution gX are approximately invariant under the action of group elements g
m X ~=gX, gfromG
m The probability of an augmentation sample is approximately equal to the original sample

* Anselmi, et al. "Oninvariance and selectivity in representation learning." Information and Inference: AJournal of the IMA 2016.
« Dao, Tri, et al. "A kernel theory of moderndata augmentation.” International Conference on Machine Learning. PMLR, 2019.
6 * Chen, Shuxiao, Edgar Dobriban, and Jane H. Lee. "A group-theoretic framework for data augmentation." JMLR 21.245 (2020):1-71. QUYQ



CASE STUDY 1 : 3D MONOCULAR OBJECT DETECTION( 3D-MOD)

Exploring 2D Data Augmentation(DA) for 3D Monocular Object Detection

@ 3D-MOD is a key component of

obstacle detection pipeline

m Redundancy & Fusion with LIDAR 3D detection pipeline

m Stereo depth estimation pipelines are progressively
replaced with monocular depth estimation

@ \/otivation : DA for 3D-MOD

m Datasets for 3D-MOD are costly to create

m Data augmentations on 2D object detector’s change
Image geometry

Problem formulation : Data augmentation
What transformations or augmentations could be

= \iew synthesis methods are robust, but heavy performed to (image, 2D-BB) pair that do not change
= How to reuse existing annotations to be a self-supervised the depth, orientation or scale of the bounding box ?
task ?

Problem formulation : Pretext SSL task
What scalable auxilliary task along with a methodology
to generate annotation could be added to the 3D-MOD

i ?
Joint work: Sugirtha T, Sridevi M, Khailash Santhakumar, Hao Liu B Ravi Kiran, Thomas Gauthier, Senthil detector izl task :

Yogamani Accepted at ICCV Workshop on Self-supervised learning for Autonomouas Driving (SSLAD 2021)
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Bounding box Instance based selliling
based

/ \
/ \ f \ / \ RandAugment

Geometry View

Aware*

Camera Differentia
Postion ble Neural

Mosaic
Blur, Cutout

Cutpaste

Geometry
preserving

FastAugment

synthesis

/
2D boxes

RL-Search

Rendering GAN based

-

'
to box Cutpaste Style Transfer
Field
(8 U\ 2N /

o

JoEl B Style Transfer

Self-Supervised & Semi-supervised augmentations Augmix

Adeversarial

. . *Closest work : Lian, Qing, et al. "Geometry-aware data
Rotation Contrastive augmentation for monocular 3D object detection." arXiv

prediction Losses preprint arXiv:2104.05858 (2021).

Random
window
classifier

Nnauvvya




S % GEOMETRY PRESERVING 2D DATA AUGMENTATIONS

T For monocular 3d object detection

Cutout 4 holes

Box-MixUp

Box-Cut-paste

Mosaic-Tile

New data augmentations : Box-Mixup, Box-Cutpaste and Mosaic Tile

Geometry preserving augmentation: These transformations do not change the
camera viewpoint or the 3D orientation of the objects in the scene NAQUvQ



S % SELF-SUPERVISED LEARNING

For monocular 3d object detection

@ Self-supervised learning aims I
at adding auxiliary/pretext tasks e

= \Where the labels are either automatically
generated either by another sensors (LIiDAR) or
are correlated task

m The pretext task is correlated with the primary
task and thus training on the pretext task
provides better performance on the primary task

@ \/ulti-object labeling (MOL) B

m Established pretext tasks for 2D object detection

m Generate random windows covering existing
foreground bounding boxes

m Create soft label showing the proportion of areas
of different classes in the random window implentation from :

Lee, Wonhee, Joonil Na, and Gunhee Kim. "Multi-task self-supervised object
detection via recycling of bounding box annotations." Proceedings of the IEEE/CVE
Conference on Computer Vision and Pattern Recognition. 2019.

10 NAQUYQ
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Soft-label over random window



https://openaccess.thecvf.com/content_CVPR_2019/papers/Lee_Multi-Task_Self-Supervised_Object_Detection_via_Recycling_of_Bounding_Box_Annotations_CVPR_2019_paper.pdf

w7 SELF-SUPERVISED LEARNING

ROt b For monocular 3d object detection

RTM3D
Feature
pyramid

FPN

backbone

Data —
Augmentation

3D
Ground
Truth

Main task

> 3D Object Detection

-

-

Random box
> generator
L
detection r o
head } Multi opject
labeling

Li, Peixuan, et al. "Rtm3d: Real-time monocular 3d detection from object keypoints for autonomous driving." Computer Vision—ECCV 2020: 16

~

MSELoss

Reg Weighted L1 Loss

ReglL1Loss

BinRotLoss

Position_loss

Focal loss

L1 Loss

e

Class Heatmap
[Soft label GT]

Class Heatmap
[prediction]

Final
loss

—»

Focal loss

SSL / Pretext task

11 European Conference, Glasgow UK, August 23-28, 2020, Proceedings, Part lll 16. Springer International Publishing, 2020.

hauva
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EVALUATION METRICS

Evaluating 3D object detection

We evaluate performance using the mean Average
Precision (mAP)

We propose a new weighted ICFW mAP using the
Inverse of the Class Frequency Weights to evaluate
gainsin non majority classes (especially in KITTI)

We use the KITTI 3D object detection metrics
» Average Precision (AP) per class
* mAP 2D and ICFW mAP 2D
* mAP 3D andICFW mAP 3D
* mAP BEV and ICFW mAP BEV
 mAP AOS* and ICFW mAP AOS

* AOS : Average orientation similarity
BEV mAP: Bird Eye View 2d Box Map

Class Car | Pedestrian | Cyclist
Frequency f. | 0.82 0.12 0.05
Inverted w.. 0.04 0.27 0.69

Normalized Class Frequency on validation set of KITTI 3D

1
mAP3D = m Z APC
cel

C' = {car, pedestrian, cyclist}

ICFW mAPs;p = ) w.AP,

ceC
New proposed metric
f—l
We 1= “——— €[0,1] and chzl
ZCEC ¢ ceC
NAQUVYQ



RESULTS

SELF SUPERVISED LEARNING WITH DA

loU=0.5 mAP2D mAPBEV mAP3D ICFW mAP2D | ICFW mAPBEV | ICFW mAP3D
Baseline (B) 41.44 21.17 19.12 33 15.1 14.65
Self-Supervised Learning (SSL) with MOL
B +8W 0.85 0.53 0.46 0.83 0.7 0.54
B+16W 0.59 -0.75 -0.59 0.57 -1.88 -1.73
B +32W 14 0.29 0.12 1.75 0.12 -0.17
Data Augmentation (DA)
B + Cutout4 -0.91 0.11 -0.71 -2.79 0.15 -0.54
B + BoxMixup 0.39 0.29 0.21 0.53 0.12 0.04
B + Cutpaste 1.63 1.10 0.34 3.22 191 0.49
B + Mosaic -2.61 -1.43 -0.26 -2.96 -0.17 0.09
SSL-MOL + DA
B + 16W + Cutout 1.54 1.27 0.43 2.17 2.81 1.02
B +16 W + box mixup 1.2 1.67 1.66 1.42 2.57 2.59
B +16 W + boxmixup cutout 3.51 1.84 1.01 5.57 2.53 1.02
B +16 W + cutpaste cutout 2.87 1.38 2.26 5 1.13 1.19
B +16 W + cutpaste 0.98 0.67 0.72 1.61 0.65 0.73

The number of windows hyper-parameter with composition of data augmentation has been
optimized for in this study and requires either a grid search or DA-search.

Nnauvvya



RESULTS : EXAMPLES

SSL with data augmentations performs better at detecting pedestrians/cyclists as well as cars at larger distances



CONCLUSION CASE STUDY 1

@ 2D DA for 3D-MOD
m DA stand-alone improves the performance of the main task
m Box mixup/cut-paste augmentation performs well

@ \OL-SSL task

= Enables the RTM3D network to classify foreground regions with
different classes and background proportions better

m This is correlated with the box localisation task

@ DA-SSL Synergy :

m Data augmentation also helps the main task by providing
representations that generalize for both main and augmented
pretext-tasks

m SSL pretext tasks and their augmentations are both good
regularizers (inductive bias) and can be combined fruitfully

m SSL-pretext task provides a soft-label and makes training with DA
generalize better (hypothesis)

m Cons : Seperating augmentations between main and pretext task
IS not possible.

15 MTL : https://ruder.io/multi-task/

.

Backbone

Backbone

Pretext
task /

NAQUYQ
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“iwo2% CASE STUDY 2 : DATA REDUNDANCY ON LARGE DATASETS
-‘ﬂ‘:{:l-;‘a: - Studying data augmentation under Active learning setup to reduce data redundancy
Large scale pomtcloud semantic segmentation are fundamental
building blocks in modern AD perception stacks:

m Semantic Map layer in modern HDMaps
= Drivable zone extraction & Path planning
m Semantic re-localization and others...

Raw Maps from clients Labelled maps
Compressing Semantic-KITTI: Reducing dataredundancy on pointclouds by Active learning, G ENCI
Anh Duong, Alexandre Almin, Leo Lemarie, B RaviKiran, In Submission 2021 e cateul: t/f"'__‘
This work was granted access to the HPC resources of [TGCC/CINES/IDRIS] under the allocation
16 2021- [AD011012836] made by GENCI (Grand Equipement National de Calcul Intensif) nQUVO



S % CASE STUDY 2 : DATA REDUNDANCY ON LARGE DATASETS

Studying data augmentation under Active learning setup to reduce data redundancy

@ Pointcloud semantic
segmentation datasets have large
amounts of redundant information

m Similar scans due to temporal correlation
m Similar scans due to similar urban environments
m Similar scans due to symmetries

Q \/otivation :

= Data augmentations on large dataset had little gains

= How do we reduce redundancy or similar samples
(pointcloud, GT) by selecting

m Full Dataset = A core subset + Augmentations

@ Approach :

m Study the effect of data augmentations on the active

. learning sampling

Large dataset

—

(X0, ¥0)
(Xl Y1)

(XN; .YN)

——

—

|
R

m—

—

—

(Core-subset, Aug) ‘{3 ’

(Xi: Yi, 7, Pi)

(X4, ¥:Tj> Pj)

(XMa Yur, TM:pM)

—

Intuition : Augmentationshere model
equivariancesand should enable us to
compress the dataset




subset S from D

';-_::_'-_::_::‘::‘1: B ’:;;':'f'f':-'i A C TIVE LEARNIN G [ 0. Select Initial ]

Background

@ Active learning (AL) is an interactive 1. Train Model 5. Update ]
learning procedure With DA/no DA I I subset S with Q

= That greedily samples the most informative sample(s)to
maximize the performance of the model.

= Multiple ways to decide the mostinformative subsetto label = =
likelihood P(x|M), uncertainty P(y|x) I 2. Evaluate & 4. Get
\ Save Model Samples Q Iabelﬁon Q /

@ Al Components: !

= Training subsetS y OR

T Oracle
= Query subsetQ I Common Test ]
Heuristic func. h (random, entropy, BALD) set TfromD

Aggregation func. (aggregates pixel scores to scalar) [

~

\ 4

\4
Large redundant ] [ Annotator ]

Redundant/large dataset D
Testset T

dataset D (w/oT)

Q Gogls

m AL goal : Reduce annotation requests to Oracle
* Reduces Labeling Cost

= Our goal : Reduce redundancy large datasets
* ReducesTraining Time

18 NAQUYQ
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S 72 POINTCLOUD SEMANTIC SEGMENTATION DATASET

_____
- - ,

_ - = Semantic
"d - ' , ¢ KlTT| Semantic Segmentation | Panoptic Segmentation Pano tIC

nuscenes

St

St-4,5t-3,5t-2,5t-1. St .

i- 4 W 3
[l road |l sidewalk [l parking [ car |
B vegetation [ terrain ] trunk [ building
B otherstructure [ other-object

@ | 5rge scale pointcloud sequences with semantic labels per point

= Annotations include semantic class along with instance ID information
= Panoptic-Nuscenes provides panoptic tracklet level labels which are temporally consistent across pointcloud scans

m Established Architectures : Rangenet++, Salsanext, Cylinder3D

19 Nnauvvya

~ pole


http://www.semantic-kitti.org/dataset.html
http://www.semantic-kitti.org/dataset.html
https://arxiv.org/abs/2109.03805

DATASET SIZE

Semantic segmentation on pointclouds

Dataset Cities Sequences Annotation Sequential
(Or Points)

Semantic 1x Germany 22 (long) 28 Point, Instance Yes
KITTI

Panoptic Boston 1000 32 Point, Box, Yes
Nuscenes Singapore 40K scans Instance

PandaSet 2x USA 100 37 Point, Box Yes
Semantic 22x Citiesin 10 Countries 22 (long) 24 Point, Yes

France, Swiss, US, Denmark,
Japan, Germany, Australia,
Israel, Norway, New Zealand

Navya (ours™) 50K scans Instance

*in construction



SEMANTIC NAVYA I3 Playment

by TELUS International
Large scale semantic segmentation dataset
File Tools View Preferences Help paris_l_annotated.dat (Multi)
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S % RANGE IMAGE REPRESENTATION

At Pointcloud representation

B 11 —arctan(y, 2)7 ! w

() = (o St s )

2D range image

» Spherical projection _, 9
segmentation network

(preprocessing)

—— e

2D segmentation output mask

3D segmentaton output mask

2 NAQUYQ



HEURISTIC FUNCTION

@ Entropy heuristic

m Choose sample with the largest entropy
m Samples that are most uncertain

QRALD

= easures information gain between model
predictions, and perturbed* model predictions

m Select samples that maximize the information
gain from model parameters

23

H(ylx.L) = => p(y* = c|x. L)log(p(y* = c|x. L))

PriX=1)

(" wlx® L) = H(y* Ix", L) = Enuin(H(y*[x".w))

NAQUYQ
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(a
age and its target target

(c)

7 DATA AUGMENTATION IN POINTCLOUDS

Using the range image representation

LRy &

(b) Random masks out rectangle regions.

o000

) Random dropout mask applied on range im-

Gaussian noise applied on depth of range image(d) Gaussian noise applied on remission channel
of range image

(e) Random rotate range image and its target

NAQUYQ
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DATA AUGMENTATION IN POINTCLOUDS

Using the range image representation

(f) Random copy and paste instances from one scan to another within a batch

(glelV] Jo
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f EXPERIMENTAL SETUP ON SEMANTIC KITTI

0. Select Initial
subset 100 samples

1. Train SqSegVy 5. Update subset
With no-DA OR DA S with Q

[ 2. Evaluate & I I 3. QuerySet Q 4. Get labels ]
Save Model (240 samples) on Q /

[ Annotator ]

26 Nnauvvya
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T Z7E LABEL EFFICIENCY

{~:-':':’r"'_". With and without data augmentation
Without data augmentation With data augmentation
- pald-avg of labelling efficiency=1.077 - hald-avg of labelling efficiency=1.105
2.0{ — certainty-avg of labelling efficiency=0.935 2.0 — entropy-avg of labelling efficiency=0.886
- entropy-avg of labelling efficiency=0.902 - random-avg of labelling efficiency=1.0
1.8‘ random-avg of labelling efficiency=1.0 18
T 16 S 16l
£1.4 £14]
1.2 1.2
8 1.0 810 |
0.8 0.8! §::;;RA‘-—-\/\/J‘\I
0.6 0.6
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
MeanloU MeanloU

Nnauvvya
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RANKED HARD EXAMPLES BY THE HEURISTIC

BALD vs Random

Ground truth

Prediction
Heuristic function

Ground truth

Prediction

Heuristic function
Ground truth

Prediction

Heuristic function

(a) BALD (b) Random

Figure: Top 3 hardest samples selected at step 2/25. Each sample includes, from top to

bottom, ground truth, prediction, and image scores of that sample.

* Larger diversity in samples from the BALD heuristic.
* No Heuristic scores are available for Random heuristic since they are sampled uniformly

(glelV] Jo
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—=— Random NoAug +— Entropy NoAug

--+-- Random Aug +- Entropy Aug

CIFAR10 ResNet18

s
7 0.90 1.4
3 1.8
= 0.75 . 1.2 1.6
3 ! :
é 0.71 1.4
0.60 i
- 1.0 1.2
2 0.58 -
0.45 : T 1.0
= 4500 10500 0.81

CIFAR10 ResNetl8 NoAug

27E EFFECT OF DATA AUGMENTATION FOR CLASSIFICATION

—=— Badge NoAug
--+-- Badge Aug

1000 7000 13000 19000 25000

Labeled Set Size
CIFAR10 VGG11

0,416 0.532 0,649
Test Accuracy

=
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="
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[
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i
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=
Fos
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=

4500 10500

0.765

CIFAR10 VGG11 NoAug

CIFAR10 ResNetl8 Aug

*
e

P

0.

1000 7000 13000 19000 25000

Labeled Set Size

0.480  0.575  0.671
Test Accuracy

Labeling Efficiency Labeling Efficiency

0.766

537 0.653 0.768 0.883
Test Accuracy

CIFAR10 VGGI11 Aug

Labeling Efficiency Labelmg Efficiency

1.6
1.4
1.2
1.0 | sesessttsssr
0.565  0.659  0.752  0.846

Test Accuracy

Figure 2: Comparing AL performance of ResNet-18 (top) and VGG-11 (bottom) on CIFAR 10 with
and without augmentation. Data augmentation not only increases test accuracy but also improves the
labeling efficiencies of AL. Furthermore, BADGE outperforms entropy sampling without data aug-

mentation, but BADGE loses its advantage over entropy sampling when data augmentation 1s used.

Beck, Nathan, et al. "Effective Evaluation of Deep Active Learning on
Image Classification Tasks." arXiv preprintarXiv:2106.15324 (2021).
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Conclusions

@ DA enable better accuracies at each AL
loop step

= DA provides better label efficiency by sampling pointclouds that
are different from dataset+DA samples

@ A heuristic’s performance with DA applied
depends on the task

= Entropy with DA was better than a sophisticated heuristic
function such as BADGE

m BALD along with DA was better than Random which performed
better than Entropy

m Tasks : Classification vs Semantic Segmentation

@ Recent work on Semi-Supervised learning
to AL framework

m  Similar effect of Data augmentations while working with
unsupervised DA (consistency loss)

31

CONCLUSIONS & FUTURE WORK CASE STUDY 2

Future Work

@ Complete benchmark on full semantic KITTI
and Semantic Navya dataset

@ Aggregation maps uncertainty scores across
a whole PC/image into a scalar

= Require a way to sample regions/volumes of PCs

m Heuristic functions are scalars and confound multiple regions of the
image

@ Find the most informative set of data
augmentations for a dataset to reduce
redundancy

Nnauvvya
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