
Global-local optimizations by hierarchical cuts and

climbing energies

B. Ravi Kiran, Jean Serra
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Abstract

Hierarchical segmentation is a multi-scale analysis of an image and provides
a series of simplifying nested partitions. Such a hierarchy is rarely an end by
itself and requires external criteria or heuristics to solve problems of image
segmentation, texture extraction and semantic image labelling. In this theo-
retical paper we introduce a novel framework: hierarchical cuts, to formulate
optimization problems on hierarchies of segmentations. Second we provide
the three important notions of h-increasing, singular, and scale increasing
energies, necessary to solve the global combinatorial optimization problem
of partition selection and which results in linear time dynamic programs.
Common families of such energies are summarized, and also a method to
generate new ones is described. Finally we demonstrate the application of
this framework on problems of image segmentation and texture enhancement.

Keywords: Hierarchical segmentation, Climbing optimization,
Mathematical Morphology, Energy minimization, Dynamic programming

1. Introduction

To segment an image by a global constraint classically means to associate
a numerical energy with every possible partition of the space where this image
is defined. The best partition is then that which minimizes the energy. Is this
meaningful ? Let us suppose that the energies range from 0 to 103. Using
the formula for the classical Bell’s number, a digital square of 5×5 pixels has
4.6 × 1018 different partitions possible [9]. Each value of energy thus maps
on to millions of billions (4.6 × 1015) of partitions. What do we minimize
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here? Which implicit assumptions underlie the methods which give a unique
minimal cut?

There are only two ways for obtaining (or hoping) uniqueness: by limiting
the number of partitions, and by imposing constraints to the energy. To limit
the number of partitions, we can think of cuts on hierarchies, which provide
strong restrictions. To constrain the energy, we can try and replace the
lattice of the integers by another one, more comprehensive, e.g. a lattice of
partitions, and make hold the minimizations on it. But how to create a lattice
of partitions from a given energy? Which conditions must we introduce?
And if uniqueness is finally ensured (the lattice structure is precisely made
for that), how to reach the minimal cut in the maze of all partitions? By
means of which vital thread?

There have been several approaches to global constraints for optimiza-
tion. There are two methods we contrast here: First, the graph cuts based
optimization, popularized by Y. Boykov [7], second, partition selection from
hierarchies of partitions. The former emphasize the use of seeds, in addition,
they view the space as a one scale structure. This perspective is illustrated
by the search for a maximum flow in a directed graph, whose segmentation
applications include the optimization of conditional random field (CRF) [22].
The latter approaches emphasize the scaling of the space by means of hier-
archies, and attach less importance to labelling questions, in a first step at
least.

This paper focusses on the second type of global constraints, which are
approached from the viewpoint of hierarchical cuts (h-cuts) theory1. A hi-
erarchy, or pyramid, of image segmentations is understood as a series of
progressive simplified versions of an initial image, which result in increasing
partitions of the space. How can these partitions cooperate and summarize
the hierarchy into a unique cut, optimal in some sense. Three questions arise
here, namely:

1. Given a hierarchy H of partitions and an energy ω on the partial parti-
tions, how to combine the classes of this hierarchy for obtaining a new
partition that minimizes ω, and which can be determined easily?

2. When one energy ω depends on an integer j, i.e. ω = ωj, how to
generate a sequence of optimal partitions that increase with j, which

1This work received funding from the Agence Nationale de la Recherche through con-
tract ANR-2010-BLAN-0205-03 KIDIKO.
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therefore should form a optimal hierarchy?

3. Most of the segmentations involve several features (colour, shape, size,
etc.) that we can handle with different energies. How to combine them?

These questions have been taken up by several authors, over many years,
and by various methods. The most popular energies ω for hierarchical par-
titions derive from that of D. Mumford and J. Shah [25], in which a data
fidelity term is summed up with a boundary regularization term. The op-
timization turns out to be a trade-off between these two constraints. In
[20], for example, G. Koepfler, C. Lopez, and J.M. Morel build a pyramid of
segmentations, from fine to coarse, by progressively giving more and more
weight to the second term of Mumford and Shah functional. They stop the
region growing when a certain number of regions is reached. The method
initiated by P. Salembier and L. Garrido for generating thumbnails rests on
the same type of energy [33]. They interpret the optimal cut as the most
accurate image simplification for a given compression rate. The approach
has been extended to additive energies by L. Guigues et Al. [17]. It is al-
ways assumed, in all these studies, that the energy of any partial partition
equals the sum of the energies of its classes, which considerably simplifies the
combinatorial complexity, and answers the above two questions 1 and 2.

However, one can wonder whether additivity is the very underlying cause
of the simplifications, since P. Soille’s constrained connectivity [38], where the
addition is replaced by the supremum, satisfies similar properties. Finally,
one finds in literature a third type of energy, which holds on nodes only, and
no longer on partial partitions. It appears in the method for labeling of P.
Arbeláez [3], or in the studies of H.G. Akçay and S. Aksoy, in [1]. And again,
it yields optimal cuts.

Is there a common denominator to all these approaches, more comprehen-
sive than just additivity, and which explains why they always lead to unique
optima? The following paper is a theoretical attempt to delimit this central
concept, and to give answers to the above questions from 1) to 3). The theory
is established in section 3 to 5, section 6 presents the algorithms, which are
then applied to the two main families of climbing energies in section 7. Before
the conclusion, the approach is extended to partial optimization in section
9, and some bridges between graph cuts and hierarchical optimizations are
given in section 10.
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2. Basic notions: Hierarchies and partitions

This section provides the background required to understand this paper.
The usual distinction between continuous and digital spaces is not appro-
priate for the general theory developed in sections 3 to 6. What is actually
needed reduces to the two following hypotheses, which are assumed over the
whole paper:

1. the space E to partition is topological,

2. the smallest partition π0 of E has a finite number of classes.

The first assumption allows us to speak of frontiers between classes, or
edges. The second one aims to avoid fractalities, and to permit various
inductions, in Proposition 3.2 and in Algorithm 1, among others. Some
additional hypotheses are introduced when the energies are particularized in
section 7, e.g. ”the classes are connected sets”, or ”the edges are simple arcs
of R2”. None of these assumptions are specific to image analysis. Space E
may be the concern of parameters, semantic entities, grammars, NASDAQ
quotations, or chamber music as well.

2.1. Partitions, partial partitions

Intuitively, a partition of E of the space under study (Euclidean, digital,
graph, or else) is a division of E into regions that do not overlap, and whose
union restores E in its entirety. These regions are called classes. More
formally, one obtains the classes of a partition by means of an extensive
mapping S : E → P(E) such that,

x, y ∈ E ⇒ S(x) = S(y) or S(x) ∩ S(y) = ∅.

Below, the symbols S, T stand for classes, and π for partitions. Partition
π1 is smaller than partition π2 when each class of π1 is included in a class of
π2. This condition provides an ordering on the partitions, called refinement,
which in turn induces a complete lattice.

Following Ch. Ronse [30], a partition π(S) associated with a set S ∈ P(E)
is called partial partition (in short p.p.) of E of support S. In particular, the
partial partition of S into the single class S is denoted by {S}. The family
of all partial partitions of set E is denoted by D(E), or simply by D.
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Figure 1: Hierarchy representation using a dendrogram and corresponding leaves partition
shown in full lines, while the union of cuts π(S1) ∪ π(S2) in dotted lines.

2.2. Hierarchies of partitions

A hierarchy H is a chain of partitions πi, i.e.

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (1)

where π0 is the finest partition and πn is the partition {E} of E in a single
class. The classes of π0 are called the leaves, and E is the root. Since the
number of leaves of π0 is finite (as we have assumed above), the number n of
different partitions of H is also finite 2. The intermediary classes are called
nodes. If the q classes of the partition π(S) are {Tu, 1 ≤ u ≤ q}, one writes

π(S) = T1 t ..Tu.. t Tq,

where the symbol t indicates that the classes are concatenated. Given two
p.p. π(S1) and π(S2) having disjoint supports, π(S1)tπ(S2) is the p.p. whose
classes are either those of π(S1) or those of π(S2).

Let Si(x) be the class of partition πi of H at point x ∈ E. Expression
(1) means that at each point x ∈ E the family {Si(x), x ∈ E, 0 ≤ i ≤ n} of
those classes Si(x) that contain x forms a finite chain of nested sets from the
leaf S0(x) to E.

S(x) = {Si(x), 0 ≤ i ≤ n}. (2)

2One could argue that all components being finite, the underlying space E does not
need to be infinite. However, some problems require a finite number of leaves embedded
in a continuous space, e.g. ground truth by distance function [21].
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Conversely, according to a classical result [8], a family {Si(x), x ∈ E, 0 ≤
i ≤ n} of indexed sets generates the classes of a hierarchy iff, for i ≤
j and x, y ∈ E

Si(x) ⊆ Sj(y) or Si(x) ∩ Sj(y) = ∅, (3)

conditions which mean that the classes form an ultra-metric space [4], [23].
The partitions of a hierarchy may be represented by their classes, via a
dendrogram, i.e. a tree where each node of bifurcation is a class S, or by
their frontiers, via the saliency map of the edges, which indicates the level in
the hierarchy when an edge disappears [27],[14]. The first representation is
depicted in Figure 1, the second one in Figure 2. The classes of πi−1 at level
i − 1 which are included in class Si of level i are said to be the sons of Si.
Clearly, the descendants of each node S form in turn a hierarchy H(S) of
root S, which is included in the complete hierarchy H = H(E). One denotes
by S(E), or just S, the set of all classes S of all partitions involved in H.

The hierarchy can be loosely seen as a set of partitions containing super-
pixels of increasing sizes. Here we don’t use the superpixel terminology, and
prefer to distinguish between the class and partial partition.

Figure 2: Ducks: Initial RGB image, Luminance of RGB image, Saliency of partitions
from Luminance (inverted to see with better contrast)

2.3. Generating hierarchies of segmentations

In the paper, the focus is not on the methods for obtaining hierarchies of
segmentations, they are considered as inputs. The main techniques for hier-
archical segmentation include the various Matheron semi-groups of connected
filters (openings, alternating sequential filters) [32], the progressive floodings
of watersheds [24], [14] and [3], the hierarchies obtained by increasing con-
nections [2], [38], and the functional minimizations of Mumford and Shah
type [25]. In addition, the learning strategies for segmentation, as developed
by [4], among others, lead to very significant watersheds hierarchies. One can
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also quote the approach in [10] where additive functionals are enriched by
the introduction of shape descriptors, which yield compact representations
in [6].

2.4. Cuts in a hierarchy

Any partition π of E whose classes are taken in S defines a cut π in
a hierarchy H. The set of all cuts of E is denoted by Π(E) = Π. Every
”horizontal” section πi(H) at level i is obviously a cut, but several levels can
cooperate in a same cut, such as π(S1) and π(S2), drawn with thick dotted
lines in Figure 1, where the partition π(S1)t π(S2) generates a cut of H(E).
One can also define cuts inside any sub-hierarchy H(S) of summit S, and
similarly Π(S) stands for the family of all cuts of H(S).

Figure 3: π1(S) and π2(s) are partial partitions on hexagonal support S, h-increasingness

In particular, the refinement supremum π = π1 ∨ π2 of two cuts π1 and
π2 is the cut where the class S(x) at each leaf x is S(x) = S1(x) ∪ S2(x) =
S1(x) or S2(x).

3. Cuts and energies

3.1. Energies

An energy on the set D of all p.p. of E is a numerical function ω :
D →[0,∞]. In the following, D will be provided with several energies ω,
which may satisfy the following axioms:

i) ω is singular when the energy ω({S}) of class S is strictly smaller than,
or larger than, any p.p. of S, i.e.

ω({S}) > ∨{ω(π(S))} or ω({S}) < ∧{ω(π(S))}, π(S) p.p. of S. (4)

For example, in R2 or Z2, the number of classes of a p.p., or the sum of
their perimeters, or again the sup of their areas, are singular energies, but
the sum of their areas is not.
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ii) ω is h-increasing, i.e.

ω(π1) ≤ ω(π2) ⇒ ω(π1 t π0) ≤ ω(π2 t π0), (5)

where π1 and π2 are two p.p. of same support S, and π0 a p.p. of support
S0 disjoint of S [36]. The geometrical meaning of Rel.(5) is shown in Figure
3, and several examples are proposed in sections 4.2 and 7.

The first property results in the energetic lattice of cuts in (3.2) and the
second results in the climbing property in (4.3). We need both indeed, which
leads us to the following definition:

Definition An energy ω which is both h-increasing and singular is said to
be climbing.

3.2. Energetic orderings of the cuts

When an energy ω is allocated to the p.p. of E, the cuts that minimize ω
provide optimal segmentations of E relative to ω. However, one can wonder
about the meaning of such best cuts. The family of possible cuts being
finite, and the energy ω being a positive number, we are sure to always find
a cut that minimizes ω. And not only one but billions of billions, as we
already saw.... The problem is ill-posed because the minimization holds on
the lattice of the positive numbers. We must change the approach, well-
pose the problem by equipping the set of all cuts of H with an ordering
which involves ω, and make the minimization directly hold on the cuts. If
we are able to associate a lattice with such an ordering, the uniqueness of
the solution will then be ensured.

Theorem 3.1. Given a hierarchy H, an energy ω induces an energetic or-
dering on the set Π(E) of all cuts of H, if and only if ω is singular. In this
ordering, cut π ∈ Π(E) is less energetic than cut π′ ∈ Π(E) w.r.t. ω, and
one writes π ≤ω π′, when in each class S of the supremum by refinement
π ∨ π′ the p.p. of π inside S has an energy smaller or equal to that of π
inside S. Equivalently, for each leaf x ∈ E

a) either the class S(x) of π is the support of a p.p. χ′ of π′ and ω({S} ≤
ω(χ′),

b) or the class S ′(x) of π′ is the support of a p.p. χ of π and ω(χ) ≤
ω({S ′}).
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Proof. The equivalence of the two formulations is a consequence of Rel. 3,
which shows that each class of π ∨ π′ is either a class of π or of π′. The
reflexivity, in statements a) and b) is obvious. For the transitivity, consider
π1, π2, π3 ∈ Π, with π1 ≤ω π2 and π2 ≤ω π3. At leaf x, their three classes
are S1, S2, and S3 respectively. If S1 = S2 or S2 = S3, the theorem is locally
satisfied. If not, one cannot have S1∪S3 ⊆ S2. Indeed, if S3 ⊆ S2, there exists
a p.p. χ with {S3} t χ = {S2}, and the assumption π2 ≤ω π3 implies, by a),
that ω({S2} ≤ ω({S3}tχ). If in addition S1 ⊆ S2, i.e. {S1}tχ′ = {S2}, we
see similarly that ω({S1} t χ′) ≤ ω({S2}), which contradicts the singularity.
Therefore, the three classes S1, S2, and S3 can be ordered in two ways only,
namely

i) S1 ⊆ S3 and S2 ⊆ S3,

ii) S3 ⊆ S1 and S2 ⊆ S1.

In case i), there exist two p.p. ζ and ζ ′ with {S1}t ζ} = {S3} and {S2}t
ζ ′} = {S3}. As π2 ≤ω π3, we have, by a), ω({S2} t ζ ′) ≤ ω({S3}). There-
fore, by singularity, all p.p. of {S3} have energies ≤ ω({S3}). In particular
ω({S1}tζ) ≤ ω({S3}), which shows that transitivity is fulfilled at leave x. In
case ii), a similar proof yields the same conclusion, so that finally π1 ≤ω π3.

For the anti-symmetry, we must prove that π ≤ω π′ and π′ ≤ω π imply
that π = π′. Suppose that the class S ′(x) of π′ is the support of a p.p. χ
made of more than one class of π. By applying the case b) of the theorem
to the inequality π ≤ω π′, we have ω(χ) ≤ ω({S ′}). But we are also in case
a) for π′ ≤ω π, hence ω(χ) ≥ ω({S ′}), which implies the equality of the two
members. But this contradicts the singularity of ω, so that S ′ is partitioned
into a unique class of π, namely S. If we reverse the roles of π and π′, we
obtain the same result, which is also independent of the choice of the leave
x in E. This achieves the proof of anti-symmetry.

Conversely, consider an ordering ≤ωwhose energy would be non singular,
and two cuts π and π′ identical everywhere except in the class S ′(x) of π,
where π is locally the p.p. χ. Supposed that ω(χ) = ω(S ′(x)). This implies
π ≤ω π′ and also π′ ≤ω π. However we do not have π′ = π since χ 6= S ′(x).
Thus singularity is needed, which achieves the proof.

A lattice structure directly derives from the ordering ≤ω:
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Proposition 3.2. The set Π(E) of all cuts of H(E) forms a lattice for the
energetic ordering ≤ω. Given a family {πj, 1 ≤ j ≤ p} in Π(E), the infimum
∧ωπj ( resp. supremum ∨ωπj) is obtained by taking the partial partitions of
lowest energy (resp. highest energy) in each class of the refinement supremum
∨πj.

Proof. Consider two partitions π1 and π2. In each class S of the refinement
supremum π1 ∨ π2 one of the two partitions at least is {S}, and the other
a finer p.p. of support S. By singularity of ω they have different energies,
so that one can always choose the less (resp. most) energetic one. By doing
the same for all classes of π1 ∨ π2 we obtain the unique largest lower-bound
π1 ∧ω π2. (resp. smallest upper bound π1 ∨ω π2) of π1 and π2.

Under iteration, the proof extends to any integer n, which achieves it.

Theorem 3.1 and proposition 3.2 enrich the structure for optimization by
providing local interpretation of a global energy , since energetic extrema are
now associated with each class of ∨πj. Note also that any sub-hierarchy of
root a node S of H forms in turn an energetic lattice for ≤ω,∨ω, and ∧ω.
The ”if” statement of the theorem urges us to find singular energies, and the
”only if” one tells us that the described localization can only be reached by
singular energies. But of course, there may exist other nice orderings of the
cuts, on the base of other types energies as well.

In the notation, we distinguish the refinement lattice from the ω-lattice
by using for the former the three symbols ≤,∨, and ∧, without ω subscript.

4. Optimization and hierarchical increasingness

The optimization problem can now be stated more precisely. It consists in
finding the minimum element of the energetic lattice (∨ω,∧ω). Three entities
are involved, namely:

• A hierarchy/pyramid H of partitions of E which segment an input
image,

• An energy ω, i.e. a non negative numerical function over the family
D(E) of all partial partitions of E,

• An ”energetic” function f on E which may be the initial image, or
another one, which parametrizes the energy ω.
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These three pieces of information are independent, and aim to determine
the cuts π∗ that minimize ω, i.e. such that ω(π∗) = inf{ω(π) | π ∈ Π(E)}.
they are called below the optimal cuts.

4.1. Optimal cut characterization

Let H represent the set of all finite hierarchies of partitions of E.

Definition An energy ω on D(E) is weakly h-increasing when for any hier-
archy H ∈ H, any disjoint nodes S and S0 of H, and any partition π0 of S0,
we have

ω(π∗) = inf{ω(π), π ∈ Π(S)} ⇒ ω(π∗tπ0) ≤ inf{ω(πtπ0), π ∈ Π(S)} (6)

where Π(S) stands for the finite set of all p.p. of node S involved in hierarchy
H.

Clearly, h-increasingness implies weak h-increasingness, i.e. Rel.(5) ⇒
Rel.(6). More precisely, Rel.(5) has been weakened just enough to obtain the
theorem 4.1 of optimal cut working in both senses. Indeed, we now have

Theorem 4.1. Let H ∈ H be a finite hierarchy, and ω an energy on D(E),
and S be a node of H of sons T1..Tp . If π∗1, ..π

∗
p are optimal cuts of T1..Tp

respectively, then
π∗1 t π∗2.. t π∗p (7)

is an optimal cut of Π(S)\{S}, for any H ∈ H and any T1..Tp in H, if and
only if ω is weakly h-increasing.

Proof. Let us prove that Rel.(6) implies that π∗1 t π∗2..t π∗p is an optimal cut
of S. We firstly limit ourselves to two classes, T1 and T2, say, and consider
the energy ω(π∗1 t π∗2). The weak h-increasingness of ω implies that

ω(π∗1 t π∗2) ≤ inf{ω(π∗1 t π2), π2 ∈ Π(T2)},

and that
ω(π∗1 t π2) ≤ inf{ω(π1 t π2), π1 ∈ Π(T1)}.

Hence
ω(π∗1 t π∗2) ≤ inf{ω(π1 t π2), π1 ∈ Π(T1), π2 ∈ Π(T2)},

which shows that ω(π∗1tπ∗2) is an optimal cut of π(T1∪T2)\{T1∪T2}. Under
finite iteration, the property extends to S = ∪{Ti, 1 ≤ i ≤ p}. Conversely,
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suppose that ω is not weakly h-increasing. It means that one can find a node
S and a partial partition π0 ∈ S0, with both S and S0 in H and such that

ω(π∗ t π0) > inf{ω(π t π0), π ∈ Π(S)}. (8)

Consider the hierarchy H0 which derives from H by replacing the partitions
of S0 by π0, at all levels ≤ to that of S0. In H0, π0 is a optimal cut of
S0, although, because of Rel.(8) and because the finite number of elements
of Π(S), ω(π∗ t π0) is not a optimal cut of S ∪ S0. This counter example
achieves the proof.

Corollary 4.2. When ω is h-increasing but not weakly, then the ”only if”
part of the theorem is no longer true.

Presented in a stochastic framework where probabilities are assigned to
energies, h-increasingness could be interpreted as a Markov chain property
(of order one), since when the optimal energies of the sons of S are known, one
does not need the knowledge of the descendants below the sons, to determine
whether the energy of S is optimal.

When the ω is both h-increasing and singular, and thus climbing, then
Theorem 4.1 leads to the following key consequence

Proposition 4.3. Let ω be a climbing energy. Then for any H ∈ H and any
node S of H with p sons T1..Tp of optimal cuts π∗1..π

∗
p, there exists a unique

optimal cut of the sub-hierarchy of root S. It is either the cut π∗1 t π∗2.. t π∗p,
or the one class partition {S} itself:

ω(π∗(S)) = min{ω({S}), ω(π∗1 t π∗2.. t π∗p)} (9)

Proposition 4.3 is essential. It governs the choices of models for energies,
and their implementations:

Firstly, the obtained optimal cut π∗(E), is indeed globally less energetic
than any other cut in H. In addition, locally each class S ∈ π∗(E) is less
energetic than any p.p. of S into classes of H, and also less energetic than any
p.p. composed of classes of H and containing S. This is a strong property
of regional minimum. Thus, this optimization is both local and global.

Secondly, the dynamic programming Rel.(9) allows us to find the optimal
cut of H in one ascending pass. The nodes of H above the leaves have to
be visited according to an order which respects the inclusions. One then
compares the energy of each node with that of the p.p. of its sons, and the
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less energetic of the two is kept for continuing the ascending pass, and so on
until the top node E is reached (the formal algorithm is described in section
6).

Thirdly, the condition (5) of h-increasingness for an energy being a notion
independent of any hierarchy, one can use a different ω for each of the n levels
of hierarchy H.

Finally, though Proposition 4.3 is a fortiori satisfied when ω is weakly
h-increasing, and we deal with h-increasingness. Fortunately so, because it
is incomparably easier to check the h-increasingness of an energy than its
possible weak h-increasingness. Energies are not alywas h-increasing. For
example, the energy ω equal to the number n(π) of classes of the p.p. π
when n < 3, and 0.5n when not, is not h-increasing.

4.2. uniqueness of the minimum cut

Are the assumptions of proposition 4.3 compatible with each other? Can
an energy be both h-increasing and singular? For answering the question,
we must involve the minimum m of all the absolute differences of energies
involved in the p. p. of H, i.e.

m = inf{|ω(π)− ω(π′)| , ω(π) < ω(π′)} π, π′ p.p. of H.

As the number of p.p. of H is finite, m is strictly positive. Therefore,
one can find a ε such as 0 < ε < m, and state the following:

Proposition 4.4. Let ω be a h-increasing energy over D. Introduce the
additional energy ω′ for all {π(S) ∈ Π(S), S ∈ S}

ω′[π(S)] = ε when π(S) 6= {S} and ω′[S] = 0 when not,

with 0 < ε < m. Then the sum ω + ω′ is climbing and provides a unique
optimal cut with each sub-hierarchy H(S), namely

π∗(S) when ω[π∗(S)] 6= ω[{S}] (10)

{S} when ω[π∗(S)] = ω[{S}].

Proof. The energy ω′ is h-increasing, since in implication (5) the two p.p.{S}t
π0 and π(S) t π0 have always more than one class, so that ω′({S} t π0) =
ω′(π(S)tπ0) = ε and Rel.(5) is satisfied. Hence ω+ω′ is h-increasing. As ω′

is smaller than m, the two energies ω and ω+ω′ yield the same minimum cut
π∗(S) when ω[π∗(S)] 6= ω[{S}], but when not (ω + ω′)({S}) is less energetic
than (ω + ω′)(π∗(S)), which achieves the proof.
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Mutatis mutandis, the same proof applies also if one takes systematically
π∗(S) rather than {S} in case of equality, or again, given ω0, if one takes
π∗(S) when π∗(S) ≤ ω0 and {S} when not, etc.

What happens when ω is h-increasing but not singular? The number of
the optimal cuts explodes, and to attain uniqueness, one must use a comple-
mentary energy ω′, which is singular. Then in the ω′-energetic lattice, the
family of all ω-optimal cuts has a unique minimum (Proposition 3.2). For
finding it, it suffices, in the climbing procedure, to take at each node S the
less ω′-energetic p.p. among {S} and the π∗(S) of Eq.(9). This is indeed
exactly what we do in the examples below by choosing {S} rather than π∗(S)
when ω({S}) = ω(π∗(S)). Here ω′ is nothing but the number of classes.

4.3. Identifying and generating climbing energies

An easy way to obtain a h-increasing energy consists in defining it, firstly,
over all sets S ∈ P(E), considered as one class partial partitions {S}, and
then in extending it to all partial partitions by some law of composition.
Then, the h-increasingness is introduced by the law of composition, and not
by ω[P(E)].

The first two modes of composition which come to mind are, of course,
addition and supremum. The additive mode was studied by L. Guigues under
the name of separable energies [16], [17], a context in which he established
the Rel.(14) below. All classes S of S are supposed to be connected. Denote
by {Tu, 1 ≤ u ≤ q} the q sons which partition the node S, i.e. π(S) =
T1t ..Tu..tTq. Provide the simply connected sets of P(E) with an arbitrary
energy ω, and extend it from P(E) to the set D(E) of all partial partitions
by using the sums

ω(π(S)) = ω(T1 t ..Tu.. t Tq) =

q∑
1

ω(Tu). (11)

Just as the sum-generated ones, the ∨-generated energies on the par-
tial partitions are defined from an energy ω on P(E) followed by a law of
composition, which is now the supremum.

ω(π) = ω(T1 t ... t Tn) = ∨{ω(Ti)}. (12)

Proposition 4.5. Let E be a set and ω : P(E) → R+ an arbitrary en-
ergy defined on P(E), and let π ∈ D(E) be a partial partition of classes
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{Si, 1 ≤ i ≤ n}. Then the two extensions of ω to the partial partitions D(E)
by addition (Rel. (11)) and by supremum (Rel. (12)) define h-increasing
energies.

Proof. Let Si,0, Si,1, Si,2 be the classes of π0, π1, π2 respectively in implication
(5), and let ω be an additive energy. We draw from the law of composition
(11) that ω(π1 t π0) = ω(π1) + ω(π0), and ω(π2 t π0) = ω(π2) + ω(π0),
which shows that the additive energy ω is h-increasing. Similarly, if ω is
∨−generated, then ω(π1 t π0) = ω(π1) ∨ ω(π0), and ω(π2 t π0) = ω(π2) ∨
ω(π0), which achieves the proof.

Corollary 4.6. If {αj, j ∈ J} stands for a family of non negative weights,
then the weighed sum

∑
αjωj and supremum

∨
αjωj of h-increasing energies

ωj turn out to be h−increasing.

A number of other laws are compatible with h-increasingness, such as the
infimum or multiplication. One can also make ω depend on more than one
class, on the proximity of the edges, on another hierarchy, etc.. Examples of
composition by addition and supremum are demonstrated in Section 7.

5. Scale increasingness and climbing families of energies

5.1. Scale increasingness

There are energies ω which are parametrized by a scale parameter λ, for
example the Mumford-Shah functional. In fact, this sort of notion is less
associated to a unique energy ω than to a family {ωλ, λ ∈ Λ} of energies
depending on a positive value λ. We will describe such a scaling in terms of
progressively coarser optimal cuts (for the refinement ordering) with respect
to λ. In literature, the idea of acting on the λ coefficient of Mumford and
Shah functional in Eq.(17) goes back to G. Koepfler, C. Lopez, and J.M.
Morel [20], who used λ for generating the input pyramid H.

The family {ωλ, λ ∈ Λ} provides hierarchy H with a sequence of p optimal
cuts πλ∗, of labels λ ∈ Λ. A priori, the πλ∗ are not ordered, but if they were,
then the optimal classes would more and more spread over the space, which
would provide nice progressive refinement of the optimal cuts. To achieve this
goal, we need the supplementary axiom of scale increasingness(13), which
yields the following axiomatic:
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Definition Let Π(E) stand for the set of all cuts of the hierarchy H(E),
and Π(S) for all cuts of the sub-hierarchy H(S). We call climbing family of
energies any family {ωλ, λ ∈ Λ} of energies over Π(E) which satisfies the
three following axioms, valid for ωλ, λ ∈ Λ and for all π ∈ Π(S), S ∈ S:

i) each ωj is h-increasing,
ii) each ωj is singular,
iii) the {ωλ} are scale increasing, i.e. for λ ≤ µ, each support S ∈ S and

each partition π ∈ Π(S), we have that

λ ≤ µ and ωλ(S) ≤ ωλ(π)⇒ ωµ(S) ≤ ωµ(π), π ∈ Π(S), S ∈ S. (13)

Axiom i) compares the same energy at two different levels, whereas axiom
iii) compares two different energies at the same level. The relation (13) shows
that as λ increases, the ωλ preserves the ordering of the energies between the
nodes of hierarchy H and their partial partitions. In particular, if ω0 is h-
increasing and singular, and if {ωλ, λ ∈ Λ} is a climbing family, then the two
families {λω0, λ ∈ Λ} and {ωλ + ω0, λ ∈ Λ} are climbing.

5.2. Ordering of the optimal cuts

The climbing energies satisfy the very nice property of refinement of op-
timal cuts with respect to the parameter λ:

Theorem 5.1. Let {ωλ, λ ∈ Λ} be a family of climbing energies, and let πλ∗

(resp. πµ∗) denote the optimal cut of hierarchy H according to the energy
ωλ (resp. ωµ). Then the family {πλ∗,λ ∈ Λ} of the optimal cuts generates a
hierarchy H∗ of partitions, i.e.

λ ≤ µ ⇒ πλ∗ ≤ πµ∗, λ, µ ∈ Λ. (14)

Proof. Given λ, there exists a unique optimal cut πλ∗ of hierarchy H (axiom
ii)). At the class S of πλ∗ that contains point x we have ωλ(S) ≤ ωλ(π)
for every partial partition π of S. Then the scale increasingness (13) implies
that ωµ(S) ≤ ωµ(π), µ ≥ λ. By h-increasingness of ωµ, and by uniqueness,
class S is thus temporary optimal for ωµ, which means that the class of the
final optimal cut for ωµ at point x covers S.

Family {ωλ, λ ∈ Λ} is climbing in two senses: for each λ the energy
climbs pyramid H up to its optimal cut (h-increasingness), and as λ varies,
it generates a new pyramid to be climbed (scale-increasingness). Relation
(14) expresses ”causality” as described by Koenderink [19], i.e. the structure
found at scale µ should find a cause at scale λ for λ ≤ µ.
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6. Algorithms for optimal cuts

This section is devoted to three algorithms. First, to find the optimal cut
for a given climbing energy ω, while the second, is to determine the scales
of appearance of the classes of the provisional optimal cuts, and finally the
third to find the family of optimal cuts for a climbing family of energies.

Figure 4: Optimal Cuts Pyramids: Optimal cuts using energy in equation (20), shown
for different λs. Original image 25098, λ25098 = 0(leaves), 3000, 8000 and Original image
169012, λ169012 = 0(leaves), 400, 10000.

The hierarchy is organized as indexed set of classes present in each level
(or partition). For each class S we introduce 2 operations. Firstly we can
access children of S by the ChildOf(S) operation, and secondly, we can
access the parent S by ParentOf(S) operation. Computationally, the h-
increasingness condition (5) allows us to reach the optimal cut in one as-
cending pass (linear in the number of classes in H), by generalizing the al-
gorithm by Guigues [17] to all h-increasing energies. The law of composition
is referred to by ComposeFunc procedure and can be the sum, infimum or
supremum with their scalar weighted versions as explained earlier in propo-
sitions 4.5 and 4.6. The ComposeFunc is used to calculate the composition
of two energies as exemplified in Eq. (15), where the two energies ωφ(S) and
ω∂(S) that represent fidelity term and a regularization term, respectively.
These can be any pair of energies as further demonstrated in section 7.

The two types of ComposeFunc: ComposeFunc(ωφ(S), ω∂(S), λ) or
ComposeFunc(ω(S))

• Addition:
∑

Si∈childof(S)

ωφ(Si) + λω∂(Si)
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• Supremum:
∨

Si∈childof(S)

ω(Si)

• Infimum:
∧

Si∈childof(S)

ω(Si)

6.1. Lambda list algorithm

The lambda list algorithm developed here is the same as in [17]. The scale
of appearance of each class S based on the scale parameter λ is described
here. The purpose of the algorithm is to extract all the scale parameter λ
as described in equation 15 values at which a particular class(node) of the
hierarchy appears. This is also the value of λ at which the child classes will
disappear. Thus this algorithm depends on the energies ω∂(S) and ωϕ(S)
for each class, and the composition function ComposeFunc. The elementary
step of the algorithm as described in the algorithm 2, is to compare the
parent energy ω(P ) = ω∂(P ) + λωϕ(P ) w.r.t the composition of energies of
the children ω(C) = ComposeFunc(ω(ci)), where ci refers to of each child
whose energy is ω(ci) = ω∂(ci) + λωϕ(ci). The composition shown in toy
example in figure 5 corresponds to addition.

The appearance of scales of each class with respect to its children, here is
calculated by a simple linear inequality, Λ(P ) = ω(P ) ≤ ω(C), which gives
the valid value λ and thus the list of all possible optimal cuts. This result is
formally described in 5.1. The LambdaList algorithm implemented in this
paper uses a simple quantization of the increment ∆λ, while to obtain all
values without prior knowledge requires a global branch bound search for the
optimal λs.

A set of the optimal cuts belonging to the optimal cut pyramid is shown
for two images in figure 4. The leaves (finest partition) is obtained at λ =
λmin, at which all the leaves classes are present. Partitions for higher values of
λ are shown, which shows the series of partitions in the optimal cut pyramid.
The optimal cut algorithm can be seen as a max-flow problem on directed
planar graphs which are trees (see section 9). While for a directed planar
graph the complexity is nlog(n), the complexity for a tree 1 is at worst linear.
The complexity of the algorithm 3 is linear in the number of λs of the input
pyramid [17].
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Algorithm 1: Optimal Cut algorithm: OptimalCut(H, λ, ωλ(S))

Data: H, Scale parameter λ, Energies ωφ(S), ω∂(S) for each class S.
Result: Optimal cut π∗

begin
NumLevels←− |s| Assign the maximum number of levels
(partitions) in the hierarchy H. This integer index is given by the
number of unique values of saliency function s
NumClass←− 0 Initialized to 0. Assign the maximum number of
classes in a given partition (level) of the hierarchy H
π∗ ←− ∅ Initialise the optimal cut to empty set
for level ∈ [2, NumLevels] do

NumClass(level)←− |π(level)|
for S ∈ [1, NumClass(level)] do

ChildList←− ChildOf(S)
UpperParent←− ParentOf(S) Parent of Current class
ΩClass ←− ωφ(S) + λω∂(S)
ΩChild ←− ComposeFunc(ωλφ(SChild), ω

λ
∂ (SChild), λ) Where

SChild ∈ ChildList.
if (ΩClass ≤ ΩChild) then

ChildOf(S)←− ∅
else

ChildOf(UpperParent)←−
ChildOf(UpperParent)

⋃
Schild \ S where

Schild ∈ ChildList
end

end

end

end
π∗ ←−

⋃
S Where S ∈ H represents classes that are not deleted.

end

19



Figure 5: A toy example of the lambda list algorithm is shown. Two energies ω∂

and ωϕ as described in equation 15, which are represented by toy values in the first
two trees. The final energies ω∂(S) + λωϕ(S) for two trees are shown for λ = 1 and
λ = 2. For this example, we consider the composition of child energies by addition,
ComposeFunc(ω(ci)) =

∑
i(ω(ci). The scale of appearance of the root node, shown in

dashed lines, is shown to be Λ(root) = 2, which is value of λ for which the parent energy
equals the child energy, rendering the parent class (in this case the root) optimal.

Algorithm 2: Lambda List: LambdaList(H,ωφ(S), ω∂(S))

Data: H, Energies ωφ(S), ω∂(S) for each class S.
Result: Lambda List Λ of values which correspond to λs at which

parent class S appears.
begin

NumLevels←− |s| Assign the maximum number of levels
(partitions) in the hierarchy H. This integer index is given by the
number of unique values of saliency function s
NumClass←− 0 Initialized to 0. Assign the maximum number of
classes in a given partition (level) of the hierarchy H
λ←− 0
while All classes have not appeared do

for level ∈ [2, NumLevels] do
NumClass(level)←− |π(level)|
for S ∈ [1, NumClass(level)] do

ChildList←− ChildOf(S)
Ωλ
child−ϕ(T )←− 0

Ωλ
child−∂(T )←− 0

for T ∈ ChildList do
Ωλ
child−ϕ(T )←− Ωλ

child−ϕ(T ) + ωφ(T )

Ωλ
child−∂(T )←− Ωλ

child−ϕ(T ) + ω∂(T )

end
Update the Lambda List. This is the value of λ at which
parent S is optimal(equal in energy) w.r.t to its children

Λ(S)←− Ωλchild−ϕ(T )−ωϕ(S)

ω∂(S)−Ωλchild−∂(T )

end

end

end

end
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Algorithm 3: Optimal Cut Pyramids

Data: Input hierarchy of partitions H, represented by saliency s,
Energy ωλ(S) parametrized by λ for each class S.

Result: Optimal cut pyramid H∗

begin
H∗ ←− ∅
j ←− 1, i←− 1 indexing starts at 1
Λ←− LambdaList(H)
πi ←− OptimaCut(H,Λ(i), ωΛ(i))
while |πi| > 1 do

i←− i+ 1
πi ←− OptimaCut(H,Λ(i), ωΛ(i))
if πi /∈ H∗ then

H∗(j)←− πi

j ←− j + 1
end

end

end

Algorithm 3 is not an efficient implementation, we present it for the sake
of pedagogy to demonstrate how scale increasingness works. One has a com-
plexity which is linear according to L.Guigues implementation.

7. A few useful h-increasing energies and experiments

Following the two modes of composition given by proposition 4.5, we
now review two families of climbing energies obtained by addition and by
supremum.

7.1. Additive energies

Scale increasingness. Proposition 4.5 has shown that ω is h-increasing. Con-
cerning the scale increasingness, a supplementary assumption of affinity is
needed [16]. It is obtained by decomposing ωλ(S) into a linear function of λ:

ωλ(S) = ωϕ(S) + λω∂(S) S ∈ S. (15)

21



When the energy ω∂ is sub-additive, i.e.

ω∂(
⋃

1≤u≤q

Tu) ≤
∑

1≤u≤q

ω∂(Tu), (16)

then the family is obviously scale increasing, since

ω∂(S) = ω∂(
⋃

1≤u≤q

Tu) ≤
∑

1≤u≤q

ω∂(Tu) = ω∂(π(S)).

Conversely, L. Guigues showed that the condition (16) is necessary for scale
increasingness [16] [17]. Below we summarise three different examples of
additive energies.

7.2. Three examples

Mumford and Shah energy. It is the most popular additive energy, and his-
torically the first [25]. One can find an exhaustive study of this functional
in [26]. We write it for the Euclidean plane, and suppose that the edges are
rectifiable simple arcs. Its first term, called fidelity term (ωϕ in (15)), sums
up the quadratic differences between f and its average m(Tu) in the various
Tu, and the second term, called regularization term, weights by λj the lengths
∂T i of the frontiers of all Tu, i.e.

ωj(π(S)) =
∑

1≤u≤q

∫
x∈Tu

‖ f(x)−m(Tu) ‖2 +λj
∑

1≤u≤q

(∂Tu) (17)

where the weight λj is a numerical increasing function of the level number
j. Both increasingness relations (5) and (13) are satisfied by the family of
energies Rel.(17), which therefore are climbing. Here the term ω∂ involves
the arc length function, but it is not the only choice. One can also think
about another ω∂(S), which reflects the convexity of A.

Additive energy by convexity. Consider in R2 a connected set S without holes
and with a non zero curvature everywhere on ∂S. Let dα be the elementary
rotation of its outward normal along the element du of the frontier ∂S. As
the curvature c(u) equals dα/du, and as the total rotation of the normal
around ∂S equals 2π, we have

2π =

∫
c≥0

c(u)du−
∫
c<0

|c(u)| du.
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When dealing with partitions, the distinction between outward and inward
vanishes, but the parameter

ν(X) =
1

2π

∫
∂S

|c(u)| du (18)

still makes sense. It reaches the minimum value 1 when set S is convex, and
increases with the degree of concavity. For a starfish with five pseudo-podes,
it values around 5. Now ν(S) is sub-additive for the open parts of contours,
therefore it can participate as a regularity term in an additive energy. In
digital implementation, the angles between contour arcs must be treated
separately (since sub-additivity applies on the open parts).

Additive energies by active contours. The active contours aim to match reg-
ular closed curves with the zones of maximum variation in an image [18]
[11]. The energies we view are particular cases of active contours adapted
to hierarchies, and derive from the approach proposed by Y. Xu at Al. [40].
The main idea is the following: each node S ∈ H is dilated and eroded by
a disc B, and the two crowns S ⊕ B\S, and S\ S 	 B are compared. This
comparison stands for the fidelity term in Rel. (15), and a function of the
curvature (e.g. Rel. (18)) stands for the regularity term. One goes from sets
to partial partitions by additivity, according to the relation (11).

The simplest comparative energy is given by the difference of a given
energetic function f on the two crowns:

ωϕ(S) =|
∫

(S⊕B\S)
f(x)dx−

∫
(S\S	B)

f(x)dx |, S ∈ P(E). (19)

It can be expressed in a dimensionless form by putting:

ω̃ϕ(S) =|

∫
(S⊕B\S)

f(x)dx−
∫

(S\S	B)
f(x)dx

a(S)
|, S ∈ P(E),

where a(S) denotes the area of S. When the absolute value bars are removed,
the both energies ωϕ and ω̃ϕ become sub-additive. Alternatively, the energy
ωϕ proposed in [40] is the sum of the variances of f in the two crowns, divided
by the variance of f in the union of these two crowns.

For the regularity term ω∂ of the energy (15), one classically takes the
above function ν of Rel. (18), which is scale increasing and generates the
climbing family {ωϕ + λω∂}.
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7.3. Demonstration

Optimal cut example for color image segmentation. We aim to find an opti-
mal simplified version of a colour image f , constrained by compression rate.
A hierarchy H has been obtained on input image figure 2, by segmentations
of the scalar luminance l = (r+g+b)/3 based on flooded watersheds [14]. In
each class S of H, the simplification consists in replacing the function f by
its colour mean, i.e. the means of the three channels over S. Note that this
colour mean does not intervene directly in the three energies (20) to (22),
but rather in the display of the optimal cut. We use the energy ω(S), as
defined in equation (15) to demonstrate different optimal cuts.

For the first experiment, as the data fidelity term ωϕ(S) we take the
variance of the luminance for each class S of hierarchy H (first term of
equation (20)). The regularization term ω∂(π), is equal to the contour length
| ∂S |, plus 24 bits for the average color of S. This gives the energy ωlum(S),
whose result is shown in figure 6 (left).

ωlum(S) =
∑
x∈S

‖ l(x)− l(S) ‖2 +λ(24+ | ∂S |), (20)

In a second experiment depicted in figure 6(right), we separate each colour

vector (r, g, b) into two components: the vector luminance
−→
l = (l, l, l) which

gives the gray scale, plus the orthogonal chrominance vector −→c = (r−m, g−
m, b −m) = (c1, c2, c3) whose module is the saturation.The fidelity term of
the energy is now the sum of the variances of the components of −→c over S
as shown in (21).

ωchrom(S) =
∑

x∈S,1≤i≤3

‖ ci(x)− ci(S) ‖2 +λ(24+ | ∂S |), (21)

The principle idea here is to show that the parameters of the image in-
volved in ω (namely the chrominance) can be completely de-correlated from
those used for generating the hierarchy (namely the luminance). We observe
in figure 6 (right) that the reeds in front of the female duck are now correctly
segmented, and that the water in the background has lesser detail.

ωTexture(S) = ωchrom(S) +
∑

S′∈siblings(S)

µ

σ2(Area(S′))
, (22)

This leads to a third experiment, depicted in figure 7, based on energy in
equation (22). This experiment is to extract regular textures. The first term

24



Figure 6: Optimal cuts by using variance of luminance(left), chrominance(right)

Figure 7: Optimal Cuts for texture using variance of chrominance for scale λ = 100: Left,
input Image, middle and right, cuts for parameters at µ = 1012 (low uniformity) and
µ = 1014 (high uniformity), in Eq. 22.

of (22) is the same as (21). The second term in (22) is inversely proportional
to the uniformity of the sizes of the children. It is measured by the variance
of their areas. This is done also with the constraint that the variance of the
chrominance vector is reduced over the partitions of pyramid produced from
the luminance vector l. Intuitively, texture features are formulated into this
multi-scale framework where the optimal scale parameter combines the effect
of chrominance and structure of texture into one global energy function, thus
showing the flexibility of the framework.

We conclude this section by a nice interpretation, already pointed out in
Ph. Salembier and L. Garrido [33], and L. Guigues [17]. According to La-
grange formalism, one classically reaches an optimum under constraint ω(S)
by means of a system of partial derivatives. Now remarkably our approach,
in both cases, replaces the computation of derivatives by climbings.

Suppose that the value of the regularization term ω∂(π) is imposed as a
fixed cost K. The cost function ω∂(π) in the optimal cut decreases as λj

increases, since there are lesser contours. We can thus climb the pyramid of
the optimal cuts and stop when ω∂(π) is the closest to K.

25



7.4. Sup-generated energies

The composition by supremum appears in several circumstances. For
example, when dealing with the variation of a numerical function over a
partial partition versus that of its classes, or in the problems of proximity
to a ground truth, where the farthest distance form a point of some partial
partition π to a ground truth set is the supremum of the farthest distances
for the classes of π [21]. Proposition 4.5 has shown that ω is h-increasing.

Binary energies composed by supremum. The simplest ∨-energies are indeed
the binary ones, which take values 1 and 0 only. Consider a binary ∨-energy
ω such that for all π, π0, π1, π2 ∈ D(E) we have

ω(π) = 1 ⇒ ω(π t π0) = 1,

ω(π1) = ω(π2) = 0 ⇒ ω(π1 t π0) = ω(π2 t π0).

This binary ∨-energy is obviously h-increasing. The Soille-Grazzini mini-
mization provides an example of this type [38] [39]. A numerical function
f is now associated with hierarchy H. Consider the range of variation
δ(S) = max{f(x), x ∈ S} − min{f(x), x ∈ S} of f inside set S, and the
h-increasing binary energy ωk(〈S〉) = 0 when δ(S) ≤ k, and ωk(〈S〉) = 1
when not. Compose ω according the law of the supremum, i.e. π = t 〈Si〉 ⇒
ωk(π) =

∨
i

ωk(〈Si〉). Then the class of the optimal cut at point x ∈ E is the

larger class of H whose range of variation is ≤ j. When the energy ωk of
a father equals that of its sons, one keeps the father when ωk = 0, and the
sons when not. As k varies a climbing family is generated.

Ordered energy composed by supremum. Here is an example of ordered energy
due to H.G.Akcay and S. Aksoy [1] who study airborne multi-bands images
and introduce (up to a small change) µ(S) =Area (S)×(mean of all standard
deviations of all bands in S). They work with energy maximization. Allocate
a non negative measure µ(S) to each node of a hierarchy H, where µ takes
its values in a partially ordered set M , such as a color space. The energy ω
is ordered by the two conditions

ω(S) ≤ ω(S ′) ⇔ S ⊇ S ′ & µ(S) ≥ µ(S ′) S , S ′ ∈ P(E), µ ∈M . (23)

The node S∗ of the optimal cut at point x is the highest more energetic
than all its descendants. The optimal cut π∗ is obtained in one pass, by
Guigues’ algorithm [17].
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Figure 8 shows optimal cuts for three different laws of composition. In
a) the additive mode chooses the father S, when ω(S) ≤

∑
ω(Tj). In b)

the mode by supremum chooses the S, when ω(S) ≤ ∨ ω(Tj). Finally, in c)
one takes the largest node which is more energetic than all its descendants
(maximization of ω).

Figure 8: Optimal cuts for composition laws: addition, supremum and refinement. Ac-
cording to the application other laws may be used e.g. both supremum and infimum for
the proximity of ground truth with Haussdorff distances [21].

Composition of ∨-generated energies. Though the weighted supremum of ∨-
generated energies is h-increasing (Prop. 4.5), the infimum is not. In practice,
this half-result is nevertheless useful, since the ∨, paradoxically, expresses
the intersection of criteria. For example, when the function f to optimize is
colour, one can take for energies:

- ω1(S) = 0 when range of luminance in S < k1, and ω1(S) = 1 when not,
- ω2(S) = 0 when range of saturation in S < k2, and ω2(S) = 1 when not.
Then the h-increasing energy ω1(S) ∨ ω2(S) = 0 when S is constant

enough for both luminance and saturation.

8. Partial optimizations

Covering the whole space with some optimal partition is not always an
aim. Some studies require doing it, but in others ones the regions of interest
are limited, and clearly marked out by the context. Moreover, the leaves
partition often includes a good many classes due to noise. And thirdly, the
hierarchies generated by connected filters may comprise a large number of
singleton classes [32]. For example, Figure 9 b) and c) depict the flat zones
obtained by an alternating filter by reconstruction acting on the pepper image
a). All black pixels indicate the singleton flat zones. When climbing the
hierarchy, most of these point classes are covered by extended classes which
are more significant.
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Figure 9: Alternated sequential filtering of sizes 1 and 5 of image 25098 from Berkeley
Database

In other situations, some classes may be considered as non relevant be-
cause they are too small, or too large, or too far from the zone of interest,
or of a non wanted hue, etc... In all cases, they are clearly identified, so
that some label can indicate that they don’t intervene when computing the
optimal cut.

This subject extends the work on the theory of partial partitions [30].
Denote by W(E) ⊆ P(E) the set of all classes which don’t intervene. The
energies ω must satisfy the condition that, for all families {Si} ⊆ P(E) and
all families {Wj} ∈ W(E) such that (∪iSi) ∩ (∪jWj) = ∅, we have

ω((tiSi) t (tjWj)) = ω(tiSi).

The energy of the partial partition of classes {Si} must not change when
external classes {Wj} are added. It means that ω(W ) = 0 when the law of
composition invoved in ω is the sum or the supremum, and that ω(W ) =∞
when it is the infimum. When ω is h-increasing, the computation of the
optimal cut is unchanged, but now results in a partition which may contain
W classes.

9. Flow or Optimal Cut on Hierarchy?

It is now instructive to go back to the alternative approaches by min-cut
max-flow [7], or by conditional random fields (CRFs), that we quoted in the
introduction. One can notice that:

1. The CRFs and min-cut max-flow formulation represent spatial interac-
tion between pixels which is restricted to a unitary neighborhood, and
the increasing complexity may not be always advantageous [22].
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2. Hierarchical methods provide a lower combinatorial complexity while
supplying intuitive segmentations. In addition, the construction of a
hierarchy and of the ulterior energy ω may use independent pieces of
information (e.g. in section 5, luminance based energy, versus chromi-
nance and texture).

Here we compare the two methods of optimization we contrasted in the
introduction. Is it possible to interpret the structure of the data in a hierarchy
H, and the notions involved in the search for its optimal cut, in terms of
maximum flow problem, or dually of optimal cut, in a graph G?

The definition of a flow through G requires the data of a source and a
sink. The particular shape of a pyramid leads us to take for source the family
A of all leaves, and for sink the whole space E. In flows, capacities are often
allocated to the edges, and sometimes to the vertices. For the sake of com-
parison, in case of a hierarchy H, we will take the nodes. Now, in the graph
case, one wants to maximize the flow, whereas above, both additive and sup-
generated energies were the matter of minimizations. We must choose, and
from now on we decide to maximize the hierarchical energies, i.e. to invert
the ordering relations (e.g. in comparisons father/sons of the h−increasing
case).

In a pyramid, each leaf a is connected to the root E by a unique path
[a, .., E], strictly increasing, and different for each leave. For example, in
Figure 10 we demonstrate a toy example with sample energies shown on a
dendogram. Each node is given a capacity, which appears within it, as shown
in figure. As long as two paths in this graph(tree) have no common node, the
flows they carry are independent, and upper bounded by the lowest capacity
along the portion where they are disjoint. When two such lines meet at some
node, e.g. the two paths [a1, .., S] and [a1, .., S] which meet in S in then one
must adopt some law for composing them, which is exactly what the optimal
cut algorithm performs in the dynamic program.

Consider for example the additive energies, which are the most similar to
the flows over a directed graph. In this additive case, the capacities ω(Ti} of
the sons {Ti} of S are added, and compared to ω(S). The min of

∑
ω(Ti}

and ω(S) gives the provisional capacity of the flow in S, and one pursues
the climbing. At the end, the nodes of the optimal cut are those which are
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Figure 10: Flow on Hierarchy: The digram shows the min-cut for a planar graph(a tree)
representing the hierarchy. The source S is connected to all the leaves by an infinite weight
to force the flow through all leaves, while the sink is fixed at the root of the hierarchy.
The iterations of the augmenting flow method are shown, where the minimum value on
each path is subtracted from each node in the path, up till the point where we obtain a
cut that separates S and T . Each augmenting flow step saturates necessarily one edge of
the tree. The max-flow optimization is equivalent to the climbing optimization.

labelled 0, as depicted in Figure 10. Finally, we exactly obtain a min-cut in
the graph-cut sense, but presented in another formalism, and we can state:

Proposition 9.1. Given an additive energy ω the optimal cut of a hierarchy
H is exactly the min-cut for sources located at all leaves and a sink located
at the root.

10. Conclusion

We have introduced a new method called hierarchical cuts, for finding
optimal segmentations in hierarchies, which turns out to be both global and
local. The approach rests on the energetic lattice of the cuts of a hierarchy
(proposition 3.2), which is obtained for climbing energies, i.e. h-increasing
and singular. This lattice structure results in unique optimal cuts character-
ized by the proposition 4.3. The fast algorithms 1 to 3 also derive from the
same basic concepts.

It appeared that these two ideas were a common basis for several partition
optimization methods (those which precisely work well), developed by [25],
[33], [17], [38], [1], [3], [6], [10], [20], among others.

Then we introduced the climbing families of energies which provide or-
dered optimal cuts, thus giving a scale space interpretation to the approach.

More results at http://www.esiee.fr/ kiranr/HierarchOpt.html
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Finally we demonstrated how to formulate multiple constraint functions
over the image space and obtain different optimal segmentations. Two exam-
ples with colour image segmentation and texture enhancement were shown.

In future applications we aim to look at problems of evaluation of segmen-
tation from hierarchies, labelling on hierarchies and also explicit the links to
clustering. In addition we are currently developing some aspects of wavelet
decompositions in the said climbing framework.
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