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Introduction: Hierarchical Segmentation
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Problem Formulation

Hierarchy of
Partitions

Goal
Extract partition from hierarchy with least energy
e Tractable global solution
e Conditions for uniqueness
e Conditions for Increasing unique solutions
e Optimality of solutions
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Partitions & Partial Partitions

Non-void disjoint union: A family 7 of subsets of E, that are non-empty,
mutually disjoint, and whose union covers FE.

7T={SZQE}, USi=E, SiﬂSj:@
A partition of a subset S C F is defined as:

m(S) ={A: | Ai C S, AinA; =0}

S = UA; is called the support of 7(5)

S =A;U Ay U Aj
E :=R?2 or Z2
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Partial Partition Lattice

<

Refinement Ordering

Each two partitions admit:
e a lowest upper bound,
e a greatest lower bound.

e Forms a Complete lattice

D(F) Set of all partial partitions of F



Hierarchy of Partitions (HOP)

An indexed family {m;,i € I C Z} of partitions of E defines a hierarchy when,

(i) ; are nested, forming a chain:
H={m,iclI} with i<k = m<m, ICZ,

where 7 is finest partition called leaves, and the coarsest one, is the root

(ii) finite leaves in any class of H

VAN
A

Elements S € m;, m; € H are called classes of the HOP



Cuts in a Hierarchy — e

A cut of H is a partition of E with classes of H

II(E, H):= Set of all cuts composed by classes from H
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Energies on Partitions and P.P.

Energy/Function on partial partitions:

w:D—R

Energy of a partial partition can be written by composing energies of its classes

A; EW(S)

|Guigues 2003] Separable energies can be rewritten in the same form by additive
composition of energies.

{S}:= Partial partition of support S into a single class
Energy over {S} is written shortly as w(S)
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Overview

e Notations and structures

e Review on Optimization on Hierarchies

— [Breiman et al 1984]: Classification & Regression Tree Pruning
— [Salembier-Garrido 2000]: Binary Partition Tree pruning

— [Guigues 2003]: Scale Sets and Scale climbing
e Dynamic Programming
e Braids of Partitions

e Energetic Order and Energetic-Lattices

Please refer the thesis for a more complete review.
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Constrained Optimization on Trees
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Scale-Set Representation

|Guigues 2003]

Extraction sequence of A-cuts given

e Hierarchy of Partitions

e Energy, like Mumford-shah functional

A.'Qf\ \
— “ e Scale parameters \;

. The set of A-cuts form a hierarchy.
- d X p

Optimally pruning (Breiman, Salembier), and Guigues A-cut calculated by
dynamic programming.
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Questions

Dynamic program aggregates local comparisons.

e What are the necessary conditions for global minima to exist?

e Which class of energies enable local comparisions aggregate to reach global
minimum 7

e Do optima in these studies use only the numerical ordering in energy?

e [s additivity necessary condition to answer these questions 7
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Overview

e Notations and structures
e Review on Optimization on Hierarchies
¢ Dynamic Programming

— Dynamic Program Sub-structure

— Examples

— h-increasingness

— Minkowski norm based generalization
— Other h-increasing energies

e Braids of Partitions
e Energetic Order and Energetic-Lattices
e Constrained Optimization

e (Conclusion
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Dynamic Program

w*(n(8)) = min{w({S}, Y w(a)}

aen(S)

7(S), otherwise

W*(S) _ {{S}, 1fw(S) < ZOLEW(S) w(a)

7* is the optimal cut given w after DP

7*(\) is optimal A-cut given w(A) after DP
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Salembier-Garrido & Guigues (Additive)

............

(S) = {{5}, if W(S) < Xoen(s) @(a)

7(S), otherwise

[Salembier Garrido 2000, Guigues 2003]



Dominant Ancestor

L ]
- L]
. . L

. *
---------

e Optimal class S*: smallest class more energetic than all its descendants.

o w(5*) <V, g w(Ti)
[Akcay-Akcoy 2008]
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Generalizing the DP
h-increasingness on HOP

[Serra DGCI 2011, Kiran-Serra PR 2013]
m(S) < ma(S) T (S) Umg < ma(S) Umg

w(m(5)) < w(mz(S5)) = w(m(5)Um) < w(me(S) Umo)

LI: disjoint union to concatenate partial partitions during DP

Local optimum = Global optimum



h-increasing energy compositions

e Additive

[Breiman et al. 1984, Salembier-Garrido 2000, Guigues 2003]
e Supremum & Dominant Ancestor

[ Akcay-Akcoy 2008, Soille 2008, Valero 2011, Veganzones-Chanussot 2014]
e Minkowski norm generalization

¢ Max-pooling type, alternating compositions
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Generalized Minkowski composition

w*(m(S)) = min{w({S},w(n(S))}

w(T;) Composition Law

infimum

harmonic sum

number of classes

SuIn

quadratic sum

supremum




Mumford-Shah Energy

Initial Image Initial watershed hierarchy H on luminance [

Mumford-Shah Energy

w(m(S),A) = Z1gkgp wep(Th) + A Z1§kgp wo(Tk)
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Optimal Cuts

luminance fidelity term ,
we(T) = [p ll(z) — p(T)[|" dz

chrominance fidelity term ,
we(T) =32, [p llei(®) — pa(T)||” da

Contour length §) 3 — - \ .
wa(Ty) = 0Ty, W(m(S), A) = 21 <hap W (Th) + A2 g wa(Th)

A fixed to have partition with same coding cost
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Another example: color and texture

Partition with least variation in component sizes

Initial Image

w(m(S),A) = E1§k§p we (1) + )‘Zlgkgp wo(Tk) + pwp(Tk)

2
wo(T) =T — (%r((g)‘)) Texture: deviation from average sibling size
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Another example: color and texture
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Overview

Notations and structures
Review on Optimization on Hierarchies
Dynamic Programming

Braids of Partitions

— Composing Hierarchies

— Binary net opening

— h-increasingness for Braids
— Braid Dynamic Program

Energetic Order and Energetic-Lattices

Constrained Optimization
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Braid of Partitions

A Braid B with a monitoring hierarchy H, is a family of partitions, where the
refinement supremum between two partitions in B is an element of H.

Vm,m€B = mVmeH\{F}

Family of partitions Monitor hierarchy H
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OIO2OLOL0X0, (
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€S

Composing hierarch

Braid

At
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Watershed hierarchy
(Volume Attribute)

Watershed hierarchy
(Area Attribute)

Input Image



€S

Composing hierarch

Braid

Watershed hierarchy
(Volume Attribute)

Watershed hierarchy
(Area Attribute)

Monitor Hierarchy



Why Braids

e Uncertain partition boundaries = many possible partial partitions
e Multivariate segmentations
e Composition of hierarchical segmentations

e The dynamic program works for the family of braids, and ensures better
infimum for over composition of hierarchies with non-trivial monitors.

No single GT is a refinement of the mean-shift segmentation, but their suprema are!

)

4

Input MeanShift
Segmentation

Berkeley Expert Ground truths >

[Unnikrishnan et al. 2007]
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h-increasingness on BOP

7T1(S) % WQ(S) l_|7T0 ﬁ 7T2 l_|7T0
w(m(9)) < w(ma(9)) — YU mg) < w(me(S) Umg)
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Overview

Notations and structures

Review on Optimization on Hierarchies
Dynamic Programming

Braids of Partitions

Energetic-Lattices

— Singular Energies

— Energetic Order

— Energetic Lattices
— Scale-Increasingness

Constrained Optimization

Conclusion
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Uniqueness and Singular Energy

[Kiran-Serra PR 2013]

i (S) i (S) {S}

w({5}) # w(mi(5)),Vi € [1,n]

Various authors indirectly use the singularity condition for a unique solution.
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Energetic Order

[Kiran-Serra PR 2013]

{5} {5}
| i i | ~vno
| i i i I i 7
w(w' MS) =50 w({S'}) =60
| | | i | i 0
w({S}) =45 w(rMS") =35

T=em & VSenVa wehave w(nM{S}) < w(n’'M{S})
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Energetic Lattice
[Kiran-Serra PR 2013]

e The energetic lattice ( <, V. ) derives from the energetic order.
e Existence of unique solution when w singular.
e local minimum =— global minimum.

e Given w and the family of partitions II( F, B) generate an energetic lattice
iff w is singular.
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Scale Increasing Energies

[Kiran-Serra PR 2013]

A family {w(X), A € R} of energies on D(F) is scale increasing when:

A<pu and w{SH M) <w(a,\) = w{S}t,p) <w(a,u), SePFE), aC{S}

These energies produce a chain of A-cuts which increase with .
e )\-Set is a descriptor dependent on energy

e )\-Set also provides \’s to perform constrained optimization.
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Hierarchy of optimal cuts

[Kiran-Serra PR 2013]

Given a parametrized energy: {w(A,7), A > 0}.

A family {wx, A > 0} is said to be climbing when:
e {w(m, A) is scale increasing,

e VA, {wy} is singular and h-increasing.

Then, A-cuts {7*(A1) < 7*(A2)}, for A\; < Ay produce a hierarchy:.

Energetic Lattice Based Optimization
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Scale-Increasingness: Example Hierarchy

s
A R

TR Hlea
20 RO

Input Hierarchy (UCM)

A =400 A = 10000
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Overview

Notations and structures

Review on Optimization on Hierarchies
Dynamic Programming

Braids of Partitions

Energetic-Lattices

Constrained Optimization

— Counter Example: A-cuts are lower bounds

— Recall on Lagrangian Primal and Dual Problems
— Guigues-Salembier search dual domain

— Energetic Lattice based Constrained Optimization

Conclusion
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Scale-sets are Upper bounds

Aw,,

Y Parents A = — Ao

A-cuts my,mo, m3 for A =1,2,3 Vs  Minimal Cuts m, 7’




Scale-sets are Upper bounds

wa7w9’94\
141 o S P __w_(’p_gﬁ:k\
; : I ; :
; i :
........ SURURN RN BN
; 1 :
9 . ...... : :
........ :.
3 5 e z
T C=15
? i : ?
: 1 :
: [ :
61 E_.__._: .................. wa(ﬂ';‘\

e Other Cut Energies: w, (1) =11 wy(n’) =7
® wy is never equal to the cost C' = 7.5 at any time.
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Observations

e Lack of C' — A mapping: For a given cost wy < C one is not assured a
corresponding multipler .

e Uniqueness is lost, even when w,, is strictly A-increasing.
e m(\*) is only the upper-bound for a given C.

o | wy(m*(A*))—C'"| gives no information about | w,(7*(A*)) —w,(7) | where
7 is a constrained minimal cut.
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Perturbed Primal Problem

minimize  w, ()
nell(E,B)

subject to  wa(m) <0,
Given the Lagrangian w(m, A\) = w,(7) + A - wa(7), and multipler A:

let 7*(A) minimize the Lagrangian.

7*(A) solves the constrained problem, where the constraint is A-dependent

minimize  w,(m)
n€II(E,B)

subject to  wy(m) < wy(m*(N)),

[Everett 1963]
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Optimal Dual Parameter

e Changing to the dual domain does not aid solving a combinatorial prob-
lem, it provides some upper-bound.

e [Salembier-Garrido 2001] searches A-cuts to approximate constraint value

wa(’ﬁ) ~ (C

e |Guigues 2003] produces causal scale-set description of image using defined
energy.

e By choosing multiplier A from possible \’s one achieves an optimum for a
constraint value is A-dependent (Everett’s Theorem [Everett 1963]).
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Conclusion

e Expanding solution space to Braids, which is the largest family for which
the energetic lattice structure holds.

e Singularity: Necessary & Sufficient conditions to find unique solutions
e h-increasingness of energies preserves DP substructure

e Energetic Lattice Infimum characterizes minimal cut
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