

Energetic Lattice Based Optimization

Bangalore Ravi KIRAN ESIEE, Université Paris-Est A3SI-LIGM 31 October 2014 Directed by: Jean SERRA

Energetic Lattice Based Optimization

Introduction: Hierarchical Segmentation

Ultrametric Contour Map Hierarchy

Problem Formulation

Input

Goal

Extract partition from hierarchy with least energy

- Tractable global solution
- Conditions for uniqueness
- Conditions for Increasing unique solutions
- Optimality of solutions

Overview

1. Notations and structures

- Partitions & Partial Partitions
- Hierarchy of Partitions
- Representations
- Energy
- 2. Review on Optimization on Hierarchies
- 3. Dynamic Programming
- 4. Braids of Partitions
- 5. Energetic-Lattices
- 6. Constrained Optimization
- 7. Conclusion

Partitions & Partial Partitions

Non-void disjoint union: A family π of subsets of E, that are non-empty, mutually disjoint, and whose union covers E.

$$\pi = \{ S_i \subseteq E \}, \quad \cup S_i = E, \quad S_i \cap S_j = \emptyset$$

A partition of a subset $S \subseteq E$ is defined as:

$$\pi(S) = \{A_i \mid A_i \subseteq S, A_i \cap A_j = \emptyset\}$$

 $S = \cup A_i$ is called the support of $\pi(S)$

$$S = A_1 \cup A_2 \cup A_3$$
$$E := \mathbb{R}^2 \text{ or } \mathbb{Z}^2$$

Partial Partition Lattice

Refinement Ordering

Each two partitions admit:

- a lowest upper bound,
- a greatest lower bound.
- Forms a Complete lattice

$\mathcal{D}(E)$ Set of all partial partitions of E

Hierarchy of Partitions (HOP)

An indexed family $\{\pi_i, i \in I \subseteq \overline{\mathbb{Z}}\}\$ of partitions of E defines a hierarchy when,

(i) π_i are nested, forming a chain:

$$H = \{\pi_i, i \in I\} \quad \text{with} \quad i \le k \implies \pi_i \le \pi_k, \qquad I \subseteq \overline{\mathbb{Z}},$$

where π_0 is finest partition called leaves, and the coarsest one, is the root

(ii) finite leaves in any class of H

Elements $S \in \pi_i, \pi_i \in H$ are called classes of the HOP

Energetic Lattice Based Optimization

A cut of H is a partition of E with classes of H

 $\Pi(E,H){:=}$ Set of all cuts composed by classes from H

Energies on Partitions and P.P.

Energy/Function on partial partitions:

 $\omega:\mathcal{D}\to\mathbb{R}$

Energy of a partial partition can be written by composing energies of its classes

$$\omega(\pi(S)) = \sum_{A_i \in \pi(S)} \omega(A_i)$$

[Guigues 2003] Separable energies can be rewritten in the same form by additive composition of energies.

 $\{S\}$:= Partial partition of support S into a single class Energy over $\{S\}$ is written shortly as $\omega(S)$

Overview

- Notations and structures
- Review on Optimization on Hierarchies
 - [Breiman et al 1984]: Classification & Regression Tree Pruning
 - [Salembier-Garrido 2000]: Binary Partition Tree pruning
 - [Guigues 2003]: Scale Sets and Scale climbing
- Dynamic Programming
- Braids of Partitions
- Energetic Order and Energetic-Lattices

Constrained Optimization on Trees

Scale-Set Representation

[Guigues 2003]

Extraction sequence of λ -cuts given

- Hierarchy of Partitions
- Energy, like Mumford-shah functional
- Scale parameters λ_i

The set of λ -cuts form a hierarchy.

Optimally pruning (Breiman, Salembier), and Guigues λ -cut calculated by dynamic programming.

Questions

Dynamic program aggregates local comparisons.

- What are the necessary conditions for global minima to exist?
- Which class of energies enable local comparisions aggregate to reach global minimum ?
- Do optima in these studies use only the numerical ordering in energy?
- Is additivity necessary condition to answer these questions ?

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming
 - Dynamic Program Sub-structure
 - Examples
 - h-increasingness
 - Minkowski norm based generalization
 - Other *h*-increasing energies
- Braids of Partitions
- Energetic Order and Energetic-Lattices
- Constrained Optimization
- Conclusion

Dynamic Program

$$\omega^*(\pi(S)) = \min\{\omega(\{S\}, \sum_{a \in \pi(S)} \omega(a)\}\$$

$$\pi^*(S) = \begin{cases} \{S\}, & \text{if } \omega(S) \leq \sum_{a \in \pi(S)} \omega(a) \\ \pi(S), & \text{otherwise} \end{cases}$$

 π^* is the optimal cut given ω after DP $\pi^*(\lambda)$ is optimal λ -cut given $\omega(\lambda)$ after DP

Salembier-Garrido & Guigues (Additive)

$$\pi^*(S) = \begin{cases} \{S\}, & \text{if } \omega(S) \leq \sum_{a \in \pi(S)} \omega(a) \\ \pi(S), & \text{otherwise} \end{cases}$$

[Salembier Garrido 2000, Guigues 2003]

Dominant Ancestor

- Optimal class S^* : smallest class more energetic than all its descendants.
- $\omega(S^*) \leq \bigvee_{\pi(S)} \omega(T_i)$

[Akcay-Akcoy 2008]

Generalizing the DP h-increasingness on HOP

[Serra DGCI 2011, Kiran-Serra PR 2013]

 \sqcup : disjoint union to concatenate partial partitions during DP

Local optimum \implies Global optimum

Energetic Lattice Based Optimization

h-increasing energy compositions

• Additive

[Breiman et al. 1984, Salembier-Garrido 2000, Guigues 2003]

• Supremum & Dominant Ancestor

[Akcay-Akcoy 2008, Soille 2008, Valero 2011, Veganzones-Chanussot 2014]

- Minkowski norm generalization
- Max-pooling type, alternating compositions

Generalized Minkowski composition

$$\omega(\pi(S)) = \left[\sum_{u \in [1,q]} \omega(T_u)^{\alpha}\right]^{\frac{1}{\alpha}}$$

$$\omega^*(\pi(S)) = \min\{\omega(\{S\}, \omega(\pi(S))\}$$

α	$\omega(T_i)$ Composition Law
$-\infty$	infimum
-1	harmonic sum
0	number of classes
+1	sum
+2	quadratic sum
$+\infty$	supremum

Mumford-Shah Energy

Initial Image

Initial watershed hierarchy ${\cal H}$ on luminance l

Mumford-Shah Energy

$$\omega(\pi(S),\lambda) = \sum_{1 \le k \le p} \omega_{\varphi}(T_k) + \lambda \sum_{1 \le k \le p} \omega_{\partial}(T_k)$$

Optimal Cuts

luminance fidelity term $\omega_{\varphi}(T) = \int_{T} ||l(x) - \mu(T)||^2 \, \mathrm{d}x$

chrominance fidelity term $\omega_{\varphi}(T) = \sum_{i} \int_{T} ||c_{i}(x) - \mu_{i}(T)||^{2} dx$

Contour length $\omega_{\partial}(T_k) = \partial T_k$

$$\omega(\pi(S),\lambda) = \sum_{1 \le k \le p} \omega_{\varphi}(T_k) + \lambda \sum_{1 \le k \le p} \omega_{\partial}(T_k)$$

 λ fixed to have partition with same coding cost

Another example: color and texture

Partition with least variation in component sizes

Initial Image

$$\omega(\pi(S),\lambda) = \sum_{1 \le k \le p} \omega_{\varphi}(T_k) + \lambda \sum_{1 \le k \le p} \omega_{\partial}(T_k) + \mu \omega_{\rho}(T_k)$$

$$\omega_{\rho}(T) = |T| - \left(\frac{\sum(|T_i|)}{|\pi(S)|}\right)^2$$
 Texture: deviation from average sibling size

Another example: color and texture

$$\omega(\pi(S),\lambda) = \omega_{\varphi}(\pi(S)) + \lambda\omega_{\partial}(\pi(S)) + \mu\omega_{\rho}(\pi(S))$$

Initial Image

High μ

Low μ

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming

• Braids of Partitions

- Composing Hierarchies
- Binary net opening
- *h*-increasingness for Braids
- Braid Dynamic Program
- Energetic Order and Energetic-Lattices
- Constrained Optimization

Braid of Partitions

A Braid B with a monitoring hierarchy H, is a family of partitions, where the refinement supremum between two partitions in B is an element of H.

Braid: Composing hierarchies

Input Image

Watershed hierarchy (Area Attribute)

Watershed hierarchy (Volume Attribute)

Braid: Composing hierarchies

Monitor Hierarchy

Watershed hierarchy (Area Attribute)

Watershed hierarchy (Volume Attribute)

Why Braids

- Uncertain partition boundaries \implies many possible partial partitions
- Multivariate segmentations
- Composition of hierarchical segmentations
- The dynamic program works for the family of braids, and ensures better infimum for over composition of hierarchies with non-trivial monitors.

No single GT is a refinement of the mean-shift segmentation, but their suprema are!

h-increasingness on BOP $\leq \pi_2(S)$ $\pi_1(S)$ $\pi_1(S) \sqcup \pi_0 \not\leq \pi_2(S) \sqcup \pi_0$ $\omega(\pi_1(S)) \le \omega(\pi_2(S))$ $\omega(\pi_1(S) \sqcup \pi_0) \le \omega(\pi_2(S) \sqcup \pi_0)$ \Rightarrow S $\pi_1^*(S)$ $\pi_2^*(S)$

[PhD Thesis]

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming
- Braids of Partitions
- Energetic-Lattices
 - Singular Energies
 - Energetic Order
 - Energetic Lattices
 - Scale-Increasingness
- Constrained Optimization
- Conclusion

Uniqueness and Singular Energy

[Kiran-Serra PR 2013]

Various authors indirectly use the singularity condition for a unique solution.

 $\pi \preceq_{\omega} \pi' \Leftrightarrow \forall S \in \pi \lor \pi' \text{ we have } \omega(\pi \sqcap \{S\}) \leq \omega(\pi' \sqcap \{S\})$

Energetic Lattice

[Kiran-Serra PR 2013]

- The energetic lattice ($\leq_{\omega}, \vee_{\omega}$) derives from the energetic order.
- Existence of unique solution when ω singular.
- local minimum \implies global minimum.
- Given ω and the family of partitions $\Pi(E, B)$ generate an energetic lattice iff ω is singular.

Scale Increasing Energies

[Kiran-Serra PR 2013]

A family $\{\omega(\lambda), \lambda \in \mathbb{R}\}$ of energies on $\mathcal{D}(E)$ is scale increasing when:

 $\lambda \leq \mu \text{ and } \omega(\{S\}, \lambda) \leq \omega(a, \lambda) \Rightarrow \omega(\{S\}, \mu) \leq \omega(a, \mu), \quad S \in \mathcal{P}(E), \ a \sqsubseteq \{S\}$

These energies produce a chain of λ -cuts which increase with λ .

- λ -Set is a descriptor dependent on energy
- λ -Set also provides λ 's to perform constrained optimization.

Hierarchy of optimal cuts

[Kiran-Serra PR 2013]

Given a parametrized energy: $\{\omega(\lambda, \pi), \lambda > 0\}$.

A family $\{\omega_{\lambda}, \lambda > 0\}$ is said to be climbing when:

- $\{\omega(\pi,\lambda) \text{ is scale increasing}, \}$
- $\forall \lambda, \{\omega_{\lambda}\}$ is singular and *h*-increasing.

Then, λ -cuts $\{\pi^*(\lambda_1) \leq \pi^*(\lambda_2)\}$, for $\lambda_1 \leq \lambda_2$ produce a hierarchy.

Scale-Increasingness: Example Hierarchy

Input Image

 $\lambda = 0$

Input Hierarchy (UCM)

 $\lambda = 10000$

Energetic Lattice Based Optimization

 $\lambda = 400$

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming
- Braids of Partitions
- Energetic-Lattices
- Constrained Optimization
 - Counter Example: λ -cuts are lower bounds
 - Recall on Lagrangian Primal and Dual Problems
 - Guigues-Salembier search dual domain
 - Energetic Lattice based Constrained Optimization
- Conclusion

Scale-sets are Upper bounds

 \forall Parents $\lambda = -\frac{\Delta \omega_{\varphi}}{\Delta \omega_{\partial}}$

 λ -cuts π_1, π_2, π_3 for $\lambda = 1, 2, 3$ **Vs** Minimal Cuts π, π'

Scale-sets are Upper bounds

• Other Cut Energies: $\omega_{\varphi}(\pi') = 11 \, \omega_{\partial}(\pi') = 7$

• ω_{∂} is never equal to the cost C = 7.5 at any time.

Energetic Lattice Based Optimization

Observations

• Lack of $C \to \lambda$ mapping: For a given cost $\omega_{\partial} \leq C$ one is not assured a corresponding multipler λ .

- Uniqueness is lost, even when ω_{φ} is strictly *h*-increasing.
- $\pi(\lambda^*)$ is only the upper-bound for a given C.
- $|\omega_{\partial}(\pi^*(\lambda^*)) C|$ gives no information about $|\omega_{\varphi}(\pi^*(\lambda^*)) \omega_{\varphi}(\pi)|$ where π is a constrained minimal cut.

Perturbed Primal Problem

$\underset{\pi\in\Pi(E,B)}{\text{minimize}}$	$\omega_{arphi}(\pi)$
subject to	$\omega_{\partial}(\pi) \le 0,$

Given the Lagrangian $\omega(\pi, \lambda) = \omega_{\varphi}(\pi) + \lambda \cdot \omega_{\partial}(\pi)$, and multipler λ :

let $\pi^*(\lambda)$ minimize the Lagrangian.

 $\pi^*(\lambda)$ solves the constrained problem, where the constraint is λ -dependent

$$\begin{array}{ll} \underset{\pi \in \Pi(E,B)}{\text{minimize}} & \omega_{\varphi}(\pi) \\ \text{subject to} & \omega_{\partial}(\pi) \leq \omega_{\partial}(\pi^{*}(\lambda)), \end{array}$$

[Everett 1963]

Optimal Dual Parameter

- Changing to the dual domain does not aid solving a combinatorial problem, it provides some upper-bound.
- [Salembier-Garrido 2001] searches λ -cuts to approximate constraint value $\omega_{\partial}(\pi) \approx C$
- [Guigues 2003] produces causal scale-set description of image using defined energy.
- By choosing multiplier λ from possible λ 's one achieves an optimum for a constraint value is λ -dependent (Everett's Theorem [Everett 1963]).

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming
- Braids of Partitions
- Energetic-Lattices
- Constrained Optimization
- Conclusion

Conclusion

- Expanding solution space to Braids, which is the largest family for which the energetic lattice structure holds.
- Singularity: Necessary & Sufficient conditions to find unique solutions
- h-increasingness of energies preserves DP substructure
- Energetic Lattice Infimum characterizes minimal cut