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Problem Definition & Model

I Background Subtraction :
. Inputs : Video stream containing static and dynamic backgrounds
. Output : Binary classification problem per pixel b/w

foreground/background classes.
. Model : Gaussian Mixture Models (GMM) are parametric models used to

estimate the background class at each pixel of the input image.
. Contribution : Decomposition of GMM into Adaptive Rejection Cascade

of binary classifiers using strong prior information. The classifiers are
ordered by the negative class rejection rate following the Viola-Jones
rejection cascade, as well as increasing computational complexity.

I Cascade of Gaussians (CoG) Framework
. CoG constitutes of k+1 binary classifiers :
I Consistent Hypothesis Propagation (CHP) classifier : Propagates

previous time’s class (FG/BG) if the value has not changed.
I 1st dominant Gaussian ω0.η(µ0, σ0)
I 2nd dominant Gaussian ω1.η(µ1, σ1)
I kth dominant Gaussian ωk.η(µk, σk)

Figure 1:Right : Elements of CoG : CHP, first and second modes of gaussians and spatio-

temporal window of a Cascade of Gaussians. Left : Different dynamics of a pixel : Dynamic

Pixel Vs Oscillation Vs Pixel Drift.

CoG : Online parameter update

1. Get N frames & estimate pixel-wise µ(t), σ(t), ω(t)

2. Form matrix whose rows are adapted variance and ranked weight
observations, while columns are variables V and R,
V (tk, i) = I (tk), k = 1 : N

3. Obtain covariance matrices Rcov = Cov(R),Vcov = Cov(V )

4. Perform K-means clustering with K=3 (for temporal pixel residue due to
dynamic, oscillating, or drifting BG).

5. Threshold for pixels within 0.7− 0.5σ

6. Calculate the KDE of given cluster & the joint occurrence distribution and
associated weight ω1, µ1 and σ1

Computational analysis of Rejection-Cascade of Gaussians

I Average Speedup : Over single Image I with N pixels
N∑
i sini

(1)

I ni refers the ratio of background pixels labeled mean or mean with variance
w.r.t the total number of background pixels in the image,

I si is the normalized ratio of the time it takes for cascade level i BG
classifier model to evaluate and label a pixel as background.

I The values of n and s were profiled over various videos for different
durations.

Figure 2:Left: Pixels in CHP(red), Mode 1(green), Mode 2(blue), Mode 3(violet) and Fore-

ground(white). Right: Normalized pixel count over elements of Cascade of Gaussians CHP, first

and Second modes of Gaussians.

Deep Rejection Cascade for VAEs

I Variational Autoencoder (VAE) : are generative models that
approximate the data distribution P(X ) of a high dimensional input X , an
image or video.

Figure 3:A VAE represents a variational approximation of the latent space with an autoen-

coder architecture, with a probabilistic encoder qφ(x|z) that produces Gaussian distribution

in the latent space z (represented by mean and standard deviation vectors), and a probabilis-

tic decoder pθ(z|x), which given a code produces distribution over the input space. Loss

function : Reconstruction error + KL Divergence between training data latent space vector

distribution & standard normal.

I Deep Rejection Cascade over VAEs : A Rejection cascade
decomposition of the VAE can be achieved. The pixel-level tests in CoG are
now performed by the VAE in the latent space.
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Figure 4:VAE-CoG on the latent space representation of a VAE. Filters are all 3x3. A

convolutional VAE with latent space of 16 dimensions was trained on the CDW-2014 datasets.

I Invariance to positions, orientations, pixel level perturbations, and
deformations due to convolutional architecture.

Figure 5:The input-output pairs and absolute value of residue between input-output pairs

from a Convolutional VAE : top half without foreground bottom half with foreground. We

remark that the dynamic background such as the snow has been removed. The right column

demonstrates the 2d-Histogram over the latent space z of the CVAE (top) and the histogram

over the temporal residue over z for the same test sequence.

I Experiments and Analysis : VAE-COG
. The VAE is trained on frames with dynamic and static background to

estimate the normal and standard deviation vectors.
. The test samples are reconstructed and residue w.r.t input scaled by

training error standard deviation is used as the output for background
subtraction.

. The Rejection Cascade elements : CHP and 1st level Gaussian frequency
are measured over the latent space for the current video in CDW-2014
dataset. The plot demonstrates many images with dynamic BG are
compressed and mapped to the same latent space vector for the CHP case.

Conclusions

I The CoG was evaluated on the wallflower dataset. We observed a speedup
of 4-5x, over the baseline GMM, with an average improvement of 17% in
the mis-classification rate.

I The VAE-CoG was evaluated on the CDW-2014 datasets, providing a first
estimate in the speedup: CHP requires memory to store previous encoded
latent space vector and output FG/BG image, while providing speedup by
avoiding the VAE-COG’s Decoding into output domain. A speedup can be
achieved with the Gaussian test though this is not trivial.
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