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Problem Definition & Maodel Deep Rejection Cascade for VAEs

» Background Subtraction : » Variational Autoencoder (VAE) : are generative models that
> Inputs : Video stream containing static and dynamic backgrounds approximate the data distribution P(X) of a high dimensional input X, an
> Qutput : Binary classification problem per pixel b/w image or video.
foreground /background classes.
> Model : Gaussian Mixture Models (GMM) are parametric models used to
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estimate the background class at each pixel of the input image. Space Vector
> Contribution : Decomposition of GMM into Adaptive Rejection Cascade / \
of binary classifiers using strong prior information. The classifiers are
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ordered by the negative class rejection rate following the Viola-Jones (Conv) (Deconv)

rejection cascade, as well as increasing computational complexity. Std Dev
Vector

» Cascade of Gaussians (CoG) Framework
> CoG constitutes of k+1 binary classifiers :
» Consistent Hypothesis Propagation (CHP) classifier : Propagates
previous time's class (FG/BG) if the value has not changed.
» 1st dominant Gaussian wq.n( 0, )
» 2nd dominant Gaussian wi.n(p1, o1)
» kth dominant Gaussian wg.N(ks O «)

Figure 3:A VAE represents a variational approximation of the latent space with an autoen-
coder architecture, with a probabilistic encoder g,(x|z) that produces Gaussian distribution

in the latent space z (represented by mean and standard deviation vectors), and a probabilis-

tic decoder pg(z|x), which given a code produces distribution over the input space. Loss

function : Reconstruction error + KL Divergence between training data latent space vector

Single Pixel Model CoG

distribution & standard normal.
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Figure 1:Right : Elements of CoG : CHP, first and second modes of gaussians and spatio- Zmean-W/4*H/4*K 8 CHP Zmean Gaussian ConvaD.T WH,3
Zstd~W/4*H/4*K,8
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temporal window of a Cascade of Gaussians. Left : Different dynamics of a pixel : Dynamic
Pixel Vs Oscillation Vs Pixel Drift Figure 4:VAE-CoG on the latent space representation of a VAE. Filters are all 3x3. A

convolutional VAE with latent space of 16 dimensions was trained on the CDW-2014 datasets.

Invariance to positions, orientations, pixel level perturbations, and

CoG : Online parameter update | | |
deformations due to convolutional architecture.

. Get N frames & estimate pixel-wise p(t), o(t), w(t)

2. Form matrix whose rows are adapted variance and ranked weight
observations, while columns are variables V and R,

V(tk, i) = I(t), k =1: N

. Obtain covariance matrices R, = Cov(R), Voo = Cov(V)

. Perform K-means clustering with K=3 (for temporal pixel residue due to
dynamic, oscillating, or drifting BG).

. Threshold for pixels within 0.7 — 0.50

. Calculate the KDE of given cluster & the joint occurrence distribution and
associated weight wi, 11 and o1

Flgure B: The Input-output pairs and absolute value of residue between input-output pairs
from a Convolutional VAE : top half without foreground bottom half with foreground. We

remark that the dynamic background such as the snow has been removed. The right column

demonstrates the 2d-Histogram over the latent space z of the CVAE (top) and the histogram
Computational analysis of Rejection-Cascade of Gaussians over the temporal residue over z for the same test sequence.

| | | » Experiments and Analysis : VAE-COG
> Average Speedup : Over single Image | with N pixels > The VAE is trained on frames with dynamic and static background to
N (1) estimate the normal and standard deviation vectors.
D i Sin; > The test samples are reconstructed and residue w.r.t input scaled by

» n; refers the ratio of background pixels labeled mean or mean with variance training error standard deviation is used as the output for background

w.r.t the total number of background pixels in the image, subtraction.
» s; is the normalized ratio of the time it takes for cascade level 1 BG > The Rejection Cascade elements : CHP and 1st level Gaussian frequency

classifier model to evaluate and label a pixel as background. are measured over the latent space for the current video in CDW-2014

» The values of n and s were profiled over various videos for different dataset. The plot demonstrates many images with dynamic BG are
durations. compressed and mapped to the same latent space vector for the CHP case.

CHP and Levels of Cascade Of Gaussians (CoG)

Conclusions

Voo » The CoG was evaluated on the wallflower dataset. We observed a speedup
Hodes of 4-5x, over the baseline GMM, with an average improvement of 17% in
the mis-classification rate.

MovedObject WavingTree TimeOf Day ~ Lightwitch  Camouage » The VAE-CoG was evaluated on the CDW-2014 datasets, providing a first
estimate in the speedup: CHP requires memory to store previous encoded
latent space vector and output FG/BG image, while providing speedup by
avoiding the VAE-COG's Decoding into output domain. A speedup can be
achieved with the Gaussian test though this is not trivial.

Figure 2:Left: Pixels in CHP(red), Mode 1(green), Mode 2(blue), Mode 3(violet) and Fore-
ground(white). Right: Normalized pixel count over elements of Cascade of Gaussians CHP, first

and Second modes of Gaussians.

bit.do/poster-PDP093 Rejection Cascade of Gaussians (RJ-CoG)



