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Quick overview of Reinforcement learning
Taxonomy of autonomous driving tasks

History & Applications

Taxonomy of methods in RL today

Autonomous Driving Tasks
Which tasks require reinforcement learning

Which tasks require Inverse reinforcement learning

Role of simulators

Challenges in RL for Autonomous driving
Designing reward functions, Sparse rewards, scalar reward functions

Long tail effect, Sample efficient RL/IL

Moving from Simulation to reality

Validating, testing and safety

Conclusion
Current solutions in deployment in industry

Summary and open questions

OV E RV I E W
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AU TO N O M O U S D R I V I N G

Scene interpretation tasks : 

•2D, 3D Object detection & tracking

•Traffic light/traffic sign

•Semantic segmentation 

•Free/Drive space estimation

•Lane extraction

•HD Maps : 3D map, Lanes, Road topology 

•Crowd sourced Maps

Fusions tasks: 

•Multimodal sensor fusion

•Odometry

•Localization

•Landmark extraction

•Relocalization with HD Maps

Reinforcement learning tasks: 

•Controller optimization

•Path planning and Trajectory optimization

•Motion and dynamic path planning

•High level driving policy : Highway, 

intersections, merges

•Actor (pedestrian/vehicles) prediction

•Safety and risk estimation
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Learning what to do—how to map situations to actions optimally : 

an optimal policy*
*Maximization of the expected value of the cumulative sum of a received scalar reward

W H AT I S R E I N FO RC E M E N T L E A R N I N G

Environment
Sensor stream

Cameras/Lidars/Radars

RL Agent
States-to-Actions (Policy)

state

Actions

Real world       / Simulator

Assessment
State-Action Evaluation

Other supervisor streamsreward
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M AC H I N E  L E A R N I N G  A N D  A I  TO DAY

Supervised Learning
Given input examples (X, Y) 

Learn implicit function approximation
f: X → Y

(X: images) to (Y: class label)

Empircal risk (loss function) : representing 
the price paid for inaccurate prediction

Predictions do not affect environment 
(Samples are IID)

Reinforcement learning
Given input state space , rewards, transitions 

Learn a policy from state-to-actions
π: S → A

(S vehicle state, images, A : speed, direction)

Value function : long-term reward achieved

Predictions affect both what is observed as 
well as future rewards

Requires Exploration, learning and interaction
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Vehicle state space
Geometry (vehicle size, occupancy grid)

Road topology and curvature

Traffic Signs and laws

Vehicle pose and velocity(v)

Configuration of obstacle (with poses/v)

Drivable zone

Actions 
Continuous control : Speed, steering

Discrete control : up, down, left, right, …

High level (temporal abstraction) : slow down, 
follow, exit route, merge

STAT E  S PAC E,  ACT I O N S  A N D  R E WA R D S

Reinforcement Learning for Autonomous Maneuvering in Highway Scenarios
A Survey of State-Action Representations for Autonomous Driving

Reward (positive/negative)
Distances to obstacles (real)

Lateral error from trajectory (real)

Longitudinal : Time to collision (real)

Percentage of car on the road (sim)

Variation in speed profile (real)

Actor/Agent intentions in the scene

Damage to vehicle/other agents (sim)

https://www.uni-das.de/images/pdf/veroeffentlichungen/2017/04.pdf
https://hal.archives-ouvertes.fr/hal-01908175/document
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O R I G I N S  O F  R E I N FO RC E M E N T  L E A R N I N G

1950s
Optimal Control

Pontryagin
Bellman

1960s
Dynamic Programming
stochastic optimal control

Richard Bellman

A History of Reinforcement Learning - Prof. A.G. Barto

1930s-70s
Trial/Error Learning

Psychology, Woodworth
Credit Assignment Minsky
Least Mean Squares (LMS)

Widrow-Gupta
Learning Automata

K-armed bandits

1990s
Q-Learning, Neuro-DP

(DP+ANNs)

Bertsekas/Tsitsiklis

1980s
Temporal Difference

R. Sutton Thesis

2006s
Monte-Carlo Tree Search

for RL on Game tree for Go

Rémi Coulom & others 
2015-2019

AlphaGo,AlphaZero
MCTS+DeepRL
Go Chess Shogi

DeepMind

2005s
Neural Fitted Q Iteration

Martin Riedmiller

2015
Playing Atari with Deep 
Reinforcement Learning

Deepmind Mnih et al.

2000s
Policy Gradient Methods

Sutton et al.

2016
Asynchronous Deep RL 

methods A2C, A3C

Deepmind Mnih et al.

2014
Deterministic Policy 
Gradient Algorithms

David Silver et al.

AlphaStar
OpenAI Dota

Adaptive signal processing
Stochastic approximation theory
Animal Psychology and neuroscience
Robotics and Control theory

https://www.youtube.com/watch?v=ul6B2oFPNDM
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openai.com/blog/dota-2/
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T E R M I N O LO G I E S

Reinforcement Learning

Model Free (P and R unknown)
Prediction : MonteCarlo(MC), 

TimeDifference(TD)
Control : MC control step

Q Learning

* Model Based (P & R known)
Control : Policy/Value Iteration
Prediction : Policy Optimization

Off policy methods
Learn from observations

* On policy methods
Learning using current policy

Exploitation
Learn Policy given 

(P, R, Value function)

Exploration
Learning (P, R, Policy) using 

current policy
Prediction

Evaluation of Policy

Control
Infer optimal policy

(policy/value iteration)

Action spaces
Continous (vehicle controller)

Discrete (Go, Chess)

Markovian Decisions 
Processes

(MDP, POMPD)

assumption
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State-action map as supervised learning
Directly map (Inputs/states) TO (Outputs/Actions) control and 
ignore IID assumption, no more a sequential decision process.

Also known as end-to-end learning since sensor streams are 
directly mapped to control

Issues :
Agent mimics expert behavior at the danger of not recovering 
from unseen scenarios such as unseen driver behavior, vehicle 
orientations, adversarial behavior of agents (overfits expert)

Poorly defined reward functions cause poor exploration

Requires huge No. (>30M samples) of human expert samples

Improvements :
Heuristics to improve data collection in corner cases (Dagger)

Imitation is efficient in practice and still an alternative

B E H AV I O R A L  C LO N I N G /  I M I TAT I O N  L E A R N I N G  ( I L )  ≠R L

DAGGER : A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Hierarchical Imitation and Reinforcement Learning

1986 2015

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/daume18ilrl.pdf
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S I M U L ATO RS  :  E N V I RO N M E N T  FO R  R L

highway-envCARLA

NVIDIA Autosim

TORCS

Zoox Simulator

AIRSIM

CARSIM

DEEPDRIVE SUMO

Motion planning & traffic simulators

Perception Stream Simulators for End-to-End Learning

Vehicle state, reward, damage

CarRacing-v0

Audi partners with Israel's autonomous vehicle simulation startup Cognata

https://www.reuters.com/article/us-cognata-audi/audi-partners-with-israels-autonomous-vehicle-simulation-startup-cognata-idUSKBN1JM15X
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Learning vehicle controllers
For well defined tasks : Lane following, ACC classical solutions 
(MPC) are good

Tuning/choosing better controllers based on vehicle and state 
dynamics is where RL can be impactful

ACC and braking assistance

Path planning and trajectory optimization
Choose path that minimizes certain cost function 

• Lane following, Jerk minimizer

Actor (pedestrian/vehicle) behavior prediction

Decision making in complex scenarios: 
Highways driving : Large space of obstacle configurations, 
translation/orientations/velocity, Rule based methods fail

Negotiating intersections : Dynamic Path Planning

Merge into traffic, Split out from traffic

M O D E R N  DAY  R E I N FO RC E M E N T  L E A R N I N G  A PPL I C AT I O N S

Planning algorithms, Steven Lavalle
Real-time motion planning

http://planning.cs.uiuc.edu/
https://www.ri.cmu.edu/pub_files/2012/5/ICRA12_xuwd_Final.pdf
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Inverse RL or Inverse Optical control
Given States, Action space and Roll-outs from Expert policy, 
Mode of the environment (State dynamics)

Goal : Learn reward function, Then learn a new policy

Challenges : not well defined, tough to evaluate optimal reward

Applications : Predicting pedestrian, vehicles behavior on road, 
Basic Lane following and obstacle avoidance

I N V E RS E  R E I N FO RC E M E N T  L E A R N I N G  A PPL I C AT I O N S

it is commonly assumed that the purpose of observation is to 
learn policy, i.e. a direct representation of mapping from states 
to actions. We propose instead to recover the experts reward
function and use this to generate desirable behavior. We
suggest that the reward function offers much more 
parsimonious description of behavior. After all the entire field
of RL is founded on the presupposition that the reward
function, rather than the policy is the most succint, robust and 
transferable definition of the task.
Algorithms for Inverse Reinforcement Learning, Ng Russel 2000

DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents

https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://arxiv.org/pdf/1704.04394v1.pdf
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Where do rewards come from ?
Simulations (low cost to high cost based on 
dynamics and details required) 

Large sample complexity

Positive rewards without negative rewards can have 
dangerous consequences

Real World (very costly, and dangerous when agent 
requires to explore)

Temporal abstraction 
Credit assignment and Exploration-Exploitation 
Dilemma

Cobra effect : RL algorithms are blind maximizers of 
expected reward

Other ways to learn a reward 
Decompose the problem in multilple subproblems 
which are easier. 

Guide the training of problems with expert 
supervision using imitation learning as initialization

Reduce the hype and embrace the inherent 
problems with RL : Use Domain knowledge

C H A L L E N G E S  I N  R E WA R D  FU N CT I O N  D E S I G N

Cobra effect : The British government was concerned about the number 
of venomous cobra snakes in Delhi. They offered a reward for every dead 
cobra. Initially this was a success as large numbers of snakes were killed for 
the reward. Eventually, however, enterprising people began to breed cobras 
for the income. When the government became aware of this, the reward 
program was scrapped, causing the cobra breeders to set the now-worthless 
snakes free. As a result, the wild cobra population further increased. The 
apparent solution for the problem made the situation even worse.

https://www.alexirpan.com/2018/02/14/rl-hard.html

https://www.alexirpan.com/2018/02/14/rl-hard.html
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Hierarchy of tasks 
Decompose the problem in multilple
subproblems which are easier. 

Combining learnt policies

Guide training for complex 
problems 

Train on principle task, then subtasks

expert supervision using imitation learning as 
initialization

C H A L L E N G E S  I N  R E WA R D  FU N CT I O N  D E S I G N

https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
Composing Meta-Policies for Autonomous Driving Using Hierarchical Deep Reinforcement Learning

https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
https://arxiv.org/pdf/1711.01503.pdf
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Rare and adversarial scenarios are 
difficult to learn

Core issue with safe deployment of autonomous driving systems

Models perform well for the average case but scale poorly due 
to low frequency, as well as sparse rewards

Hairpin bends, U-Turns 
Rare with difficult to model state space dynamics

Create simpler small sample based 
models blended with average case model 

cures symptom not the disease

LO N G  TA I L  D R I V E R  P O L I CY

Drago Anguelov (Waymo) - MIT Self-Driving Cars

https://www.youtube.com/watch?v=Q0nGo2-y0xY
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S C E N A R I O  G E N E R AT I O N  

FO R  D R I V I N G  S C E N A R I O S

https://nv-tlabs.github.io/meta-sim/#

Carla Challenge 2019

https://nv-tlabs.github.io/meta-sim/
https://carlachallenge.org/
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C H A L L E N G E S  S I M U L AT I O N - R E A L I T Y  G A P

H a n d l i n g  d o m a i n t r a n s f e r

• How to create a simulated environment which both
faithfully emulates the real world and allows the agent in 
the simulation to gain valuable real-world experience?

• Can we map Real world images to Simulation  ?
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C H A L L E N G E S  S I M U L AT I O N - R E A L I T Y  G A P

L e a r n i n g  a  g e n e r a t i v e m o d e l  o f  r e a l i t y

https://worldmodels.github.io/

World models enable agents to construct latent 

space representations of the dynamics of the 

world, while building/learning a robust

control/actuator module over this
representation.

https://worldmodels.github.io/
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Safe policies for autonomous agent
SafeDAgger :  safety policy that learns to predict the error 
made by a primary policy w.r.t reference policy.

Define a feasible set of core safe state spaces that can be 
increamentally grown with explorations

Reproducible (code) on benchmark
variance intrinsic to the methods hyperparameters init.

Cross-validation for RL is not well defined as opposed to 
supervised learning problems

C H A L L E N G E S :  S A F E T Y A N D  R E PRO D U C I B I L I T Y

Future standardized benchmarks 
Evaluating autonomous vehicle control algorithms even 
before agent leaves for real world testing. 

NHTSA-inspired pre-crash scenarios : Control loss 
without previous action, Longitudinal control after 
leading vehicle’s brake, Crossing traffic running a red 
light at an intersection, and many others

Inspiration from the Aeronautics community on risk

Carla Challenge 2019

https://carlachallenge.org/
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D R L A D  :  M O D E R N DAY D E PLOY M E N TS

Agent maximizes the reward of distance 
travelled before intervention by a safety driver.

Options Graph : 

Recovering from a 
Trajectory Perturbation

Future Trajectory Prediction on 

Logged Data

Robust Imitation learning using perturbations and simulated expert 
variations and aumented imitation loss function
https://sites.google.com/view/waymo-learn-to-drive/

https://sites.google.com/view/waymo-learn-to-drive/
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How to design rewards ? 

How should the problem be decomposed to simplify learning an policy?

How to train in different levels of simulations (efficiently)?

How to handle long tail cases, especially risk intensive cases

How to intelligently perform domain change from simulation to reality ? 

Can we use imitation to solve the problem before switching to 
Reinforcement Learning? 

How can we learning in a multi-agent setup to scale up learning?

C O N C LU S I O N
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W H E R E  I S  T H E  H Y PE  O N  D E E P  R L
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W H E R E  I S  T H E  H Y PE  O N  D E E P  R L

Hypes are highly non-stationary
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Reinforcement Learning: An Introduction Sutton 2018 [book]

David Silver’s RL Course 2015 [link]

Berkeley Deep Reinforcement Learning [Course]

Deep RL Bootcamp lectures  Berkeley [Course]

Reinforcement learning and optimal control : D P Bertsekas 2019 [book]

L E CT U R E S  A N D  S O U RC E S

http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
https://sites.google.com/view/deep-rl-bootcamp/lectures
https://web.mit.edu/dimitrib/www/RLbook.html
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World Models Ha, Schimdhuber NeurIPS 2018 . 

Jianyu Chen, Zining Wang, and Masayoshi Tomizuka. 
“Deep Hierarchical Reinforcement Learning for 
Autonomous Driving with Distinct Behaviors”. 2018 
IEEE Intelligent Vehicles Symposium (IV).

Peter Henderson et al. “Deep Reinforcement
Learning That Matters”. In: (AAAI-18), 2018. 

Andrew Y Ng, Stuart J Russell, et al. “Algorithms for 
inverse reinforcement learning

Daniel Chi Kit Ngai and Nelson Hon Ching Yung. “A 
multiple-goal reinforcement learning method for 
complex vehicle overtaking maneuvers”

Stephane Ross and Drew Bagnell. “Efficient 
reductions for imitation learning”. In: Proceedings of the 
thirteenth international conference on artificial 
intelligence and statistics. 2010

Learning to Drive using Inverse Reinforcement 
Learning and Deep Q-Networks, Sahand Sharifzadeh
et al.

R E F E R E N C E S

Shai Shalev-Shwartz, Shaked Shammah, and Amnon 
Shashua. Safe, multi-agent, reinforcement learning for 
autonomous driving 2016.

Learning to Drive in a Day, Alex Kendall et al. 2018 
Wayve

ChauffeurNet: Learning to Drive by Imitating the Best 
and Synthesizing the Worst

StreetLearn, Deepmind google

A Systematic Review of Perception System and 
Simulators for Autonomous Vehicles Research [pdf]

Meta-Sim: Learning to Generate Synthetic Datasets
[link][pdf] Sanja Fidler et al.

Deep Reinforcement Learning in the Enterprise: 
Bridging the Gap from Games to Industry 2017 [link]

https://worldmodels.github.io/
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning
https://sites.google.com/view/waymo-learn-to-drive
https://sites.google.com/view/streetlearn
https://www.mdpi.com/1424-8220/19/3/648/pdf-vor
https://nv-tlabs.github.io/meta-sim/
https://arxiv.org/abs/1904.11621
https://www.youtube.com/watch?v=GOsUHlr4DKE
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D E E P  Q  L E A R N I N G

A u t o n o m o u s  d r i v i n g  a g e n t  i n  T O R C S
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M A R KOV  D E C I S I O N  PRO C E S S

M a r k o v i a n  a s s u m p t i o n  o n  r e w a r d  s t r u c t u r e
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Learning from Demonstrations (LfD)/Imitation/Behavioral 
Cloning demonstrations are hard to collect

Measure the divergence between your expert and the current policy

Give priority in a replay buffer

Iteratively collect samples (DAgger)

Hierarchical Imitation reduce sample complexity by data aggregation by organizing the action 
spaces in a hierarchy

C H A L L E N G E S  I M I TAT I O N  L E A R N I N G

Source
improving 
diversity of 
steering angle

https://towardsdatascience.com/teaching-cars-to-drive-using-deep-learning-steering-angle-prediction-5773154608f2

