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OVERVIEW

@ Quick overview of Reinforcement learning
m Taxonomy of autonomous driving tasks
= History & Applications
= Taxonomy of methods in RL today

@ Autonomous Driving Tasks
= Which tasks require reinforcement learning
= \Which tasks require Inverse reinforcement learning
= Role of simulators

@ Challenges in RL for Autonomous driving
= Designing reward functions, Sparse rewards, scalar reward functions
m | ong tail effect, Sample efficient RL/IL
= Moving from Simulation to reality
= Validating, testing and safety

@ Conclusion

= Current solutions in deployment in industry
= Summary and open questions
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Perceive & Localize

Abstract

Lane Detection
Object Detection
Semantic Segmentation
SLAM
HD Maps

Cameras
LiDAR
RADAR
Ultrasonics

Behavior Prediction
Map

Scene interpretation tasks :

*2D, 3D Object detection & tracking fkﬁﬁﬁézzﬁ:ensor fusion
*Traffic light/traffic sign *Odometry

*Semantic segmentation

*Free/Drive space estimation

*|ane extraction

*HD Maps : 3D map, Lanes, Road topology
*Crowd sourced Maps

®[ ocalization
®[ andmark extraction
*Relocalization with HD Maps

Driving Policy Steering
Scene Understanding Path Planning Acceleration

Braking

Reinforcement learning tasks:

*Controller optimization

*Path planning and Trajectory optimization
*Motion and dynamic path planning

*High level driving policy : Highway,
intersections, merges

*Actor (pedestrian/vehicles) prediction
*Safety and risk estimation

navvya



. S e
etz WHAT IS REINFORCEMENT LEARNING
: Assessment
State-Action Evaluation

reward Other supervisor streams

Realworld / Simulator

state

Environment
RL Agent \—/
Actions
States-to-Actions (Policy) ) SenS/CIJj dStre;lI:’ld
-S> A ameras/Lidars/Radars

Learning what to do—how to map situations to actions optimally :
an optimal policy*

*Maximization of the expected value of the cumulative sum of a received scalar reward



“75 MACHINE LEARNING AND Al TODAY

Supervised Learning
Given input examples (X, Y)
Learn implicit function approximation
fiX-=>Vv
(X: images) to (Y: class label)

Remp(f) == %Z L(f('rl)a yl)

Reinforcement learning
Given input state space , rewards, transitions
Learn a policy from state-to-actions
US> A
(S vehicle state, images, A : speed, direction)

max [E { Z fyt’r‘t}
" t=0

Empircal risk (loss function) : representing Value function : long-term reward achieved

the price paid for inaccurate prediction

Predictions affect both what is observed as

Predictions do not affect environment
well as future rewards

(Samples are IID)

Requires Exploration, learning and interaction

NAQUvYaQ



@ \/chicle state space Qe

m Geometry (vehicle size, occupancy grid)
= Road topology and curvature

m Traffic Signs and laws

= \/ehicle pose and velocity(v)

m Configuration of obstacle (with poses/v)
= Drivable zone

@ Actions

m Continuous control : Speed, steering
m Discrete control : up, down, left, right, ...

= High level (temporal abstraction) : slow down,
follow, exit route, merge

Reinforcement Learning for Autonomous Maneuvering in Highway Scenarios

A Survey of State-Action Representations for Autonomous Driving

STATE SPACE, ACTIONS AND REWARDS

Reward (positive/negative)

= Distances to obstacles (real)

m | ateral error from trajectory (real)

= | ongitudinal : Time to collision (real)
= Percentage of car on the road (sim)
= Variation in speed profile (real)

= Actor/Agent intentions in the scene

= Damage to vehicle/other agents (sim)

The middle of the lane

Relative Distance

- Relative Angle

Velocity
(for other vehicles
relative to the RL Agent)

navvya


https://www.uni-das.de/images/pdf/veroeffentlichungen/2017/04.pdf
https://hal.archives-ouvertes.fr/hal-01908175/document

A History of Reinforcement Learning - Prof. A.G. Barto

ORIGINS OF REINFORCEMENT LEARNING

1960s 1930s-70s
Dynamic Programming Trial/Error Learning
stochastic optimal control Psychology, Woodworth
Richard Bellman Credit Assignment Minsky
Least Mean Squares (LMS)
Widrow-Gupta
Learning Automata

K-armed bandits I

1990s
Q-Learning, Neuro-DP

1980s
Temporal Difference (DP+ANNS)

R. Sutton Thesis Bertsekas/Tsitsiklis

Optimal Control
Pontryagin
Bellman

2000s
Policy Gradient Methods
Sutton et al.

2006s
Monte-Carlo Tree Search
for RL on Game tree for Go
Rémi Coulom & others

2015-2019 2016 T 2014
AlphaGo,AlphaZero 2005s
’ Asynchronous Deep RL ; A oof inisti i
AlphaStar MCTS+DeepRL Y P Playing Atari with Deep B WSS [ Neural Fitted Q Iteration

methods A2C, A3C Reinforcement Learning Gradient Algorithms

OpenAl Dota i
P otz e Deepmind Mnih et al. Deepmind Mnih et al. David Silver et al.

Martin Riedmiller

Adaptive signal processing
Stochastic approximation theory
Animal Psychology and neuroscience
Robotics and Control theory

Nnavvya
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https://www.youtube.com/watch?v=ul6B2oFPNDM
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openai.com/blog/dota-2/

TERMINOLOGIES

MDP
S : Set of States(discrete/continous)
A : Set of Actions
P(s,s’) : Transition probabilities
r(s,a) : Reward at state given an action

assumption s¢41 18 conditionally independant of the past states /actions give s, ay

Reinforcement Learning

|

Prediction
Evaluation of Policy

Control
Infer optimal policy
(policy/value iteration)

* Model Based (P & R known)

Control : Policy/Value Iteration
Prediction : Policy Optimization

Model Free (P and R unknown)
Prediction : MonteCarlo(MC),
TimeDifference(TD)

Control : MC control step
Q Learning

* On policy methods

. . ; Lea
Learning using current policy

Off policy methods
Learn from observations

Action spaces
Continous (vehicle controller)
Discrete (Go, Chess)

Markovian Decisions
Processes
(MDP, POMPD)

Exploration
rning (P, R, Policy) using
current policy

Exploitation
Learn Policy given
(P, R, Value function)

LA K

OO OO OO

Backup diagram for v,



steering

D

@ State-action map as supervised learning

wheel angle | Adjust for shift

and rotation

BEHAVIORAL CLONING/ IMITATION LEARNING (IL) #RL

Recorded

Desired steering command

Network
= Directly map (Inputs/states) TO (Outputs/Actions) control and | pena N 1
ignore 11D assumption, no more a sequential decision process. Contor camers o] Rendomshin | gy command _)
) ) »| ani on
= Also known as end-to-end learning since sensor streams are i
directly mapped to control c
. ;}':G"nfm* ~
ISsues :
ALVINN 1986 DAVE-2 2015

= Agent mimics expert behavior at the danger of not recovering
from unseen scenarios such as unseen driver behavior, vehicle
orientations, adversarial behavior of agents (overfits expert)

= Poorly defined reward functions cause poor exploration
m Requires huge No. (>30M samples) of human expert samples

@ |mprovements :

= Heuristics to improve data collection in corner cases (Dagger)
= |mitation is efficient in practice and still an alternative 2 ey conmnd i

-5 minutes of training data

DAGGER : A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Hierarchical Imitation and Reinforcement Learning

- 8 layer convolutional and fully

+ 250,000 parameters
* 3,000 hours of training data

connected network



https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/daume18ilrl.pdf

SIMULATORS : ENVIRONMENT FOR RL

Perception Stream Simulators for End-to-End Learning

ém-mﬁ‘ﬁ&m CARLA T TR TR highway-env

Tt

IDIA Autosim

Zoox Simulator

Vehicle state, reward, damage

| TR A
o, P

R = (1-Penalty) * speed

DEEPDRIVE

Audi partners with Israel's autonomous vehicle simulation startup Cognata



https://www.reuters.com/article/us-cognata-audi/audi-partners-with-israels-autonomous-vehicle-simulation-startup-cognata-idUSKBN1JM15X

@ | carning vehicle controllers
m For well defined tasks : Lane following, ACC classical solutions
(MPC) are good

= Tuning/choosing better controllers based on vehicle and state
dynamics is where RL can be impactful

m ACC and braking assistance

@ Path planning and trajectory optimization
m Choose path that minimizes certain cost function
* Lane following, Jerk minimizer

m Actor (pedestrian/vehicle) behavior prediction

@ Decision making in complex scenarios:

= Highways driving : Large space of obstacle configurations,
translation/orientations/velocity, Rule based methods fail

= Negotiating intersections : Dynamic Path Planning
= Merge into traffic, Split out from traffic

Planning algorithms, Steven Lavalle
Real-time motion planning

% Pty



http://planning.cs.uiuc.edu/
https://www.ri.cmu.edu/pub_files/2012/5/ICRA12_xuwd_Final.pdf

@ |hverse RL or Inverse Optical control

m Given States, Action space and Roll-outs from Expert policy,

Mode of the environment (State dynamics)
m Goal : Learn reward function, Then learn a new policy

m Challenges : not well defined, tough to evaluate optimal reward
m Applications : Predicting pedestrian, vehicles behavior on road,

Basic Lane following and obstacle avoidance

Linear
— RNN ED
RNN ED-SI

INVERSE REINFORCEMENT LEARNING APPLICATIONS

it is commonly assumed that the purpose of observation is to
learn policy, i.e. a direct representation of mapping from states
to actions. We propose instead to recover the experts reward
function and use this to generate desirable behavior. We
suggest that the reward function offers much more
parsimonious description of behavior. After all the entire field
of RL is founded on the presupposition that the reward
function, rather than the policy is the most succint, robust and
transferable definition of the task.

Algorithms for Inverse Reinforcement Learning, Ng Russel 2000

—— DESIRE-S Topl
DESIRE-S Topl0

= DESIRE-SI Top1

== DESIRE-SI Topl0

DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents



https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://arxiv.org/pdf/1704.04394v1.pdf
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here do rewards come from ?

= Simulations (low cost to high cost based on
dynamics and details required)

ayy

= | arge sample complexity

m Positive rewards without negative rewards can have
dangerous consequences

m Real World (very costly, and dangerous when agent
requires to explore)

@ Temporal abstraction

m Credit assignment and Exploration-Exploitation
Dilemma

m Cobra effect : RL algorithms are blind maximizers of
expected reward

@ Other ways to learn a reward

m Decompose the problem in multilple subproblems
which are easier.

m Guide the training of problems with expert
supervision using imitation learning as initialization

m Reduce the hype and embrace the inherent
problems with RL : Use Domain knowledge

22 CHALLENGES IN REWARD FUNCTION DESIGN

Cobra effect : The British government was concerned about the number

of venomous cobra snakes in Delhi. They offered a reward for every dead
cobra. Initially this was a success as large numbers of snakes were killed for
the reward. Eventually, however, enterprising people began to breed cobras
for the income. When the government became aware of this, the reward
program was scrapped, causing the cobra breeders to set the now-worthless
snakes free. As a result, the wild cobra population further increased. The
apparent solution for the problem made the situation even worse.

o0 s e [ o> D@D

https://www.alexirpan.com/2018/02/14/rl-hard.html

navvya
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https://www.alexirpan.com/2018/02/14/rl-hard.html

CHALLENGES IN REWARD FUNCTION DESIGN

@ Hierarchy of tasks
subproblems which are easier.
e g o cormplex - ()
Move right arm
problems
= Train on principle task, then subtasks kv -

m expert supervision using imitation learning a-
Initialization

1% 200 Iters.
3 80 T
observation ¢ "
B
@70
Eeo
50
40
o 30
20
10
0 Best Basis Voting Confidence  New Policy  Meta Policy
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/ nouvo v

Composing Meta-Policies for Autonomous Driving Using Hierarchical Deep Reinforcement Learning



https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
https://arxiv.org/pdf/1711.01503.pdf

~ A - =
= e T -
--o== :\‘\. PR, 99.7% of the data are within

I_O N G TAl L D R | \/ E R P O |_ | CY [e——————— 3 standard deviations of the mean ————————|

95% within
2 standard deviations

68% within
|<— 1 standard —>|
deviation

@ Rare and adversarial scenarios are
difficult to learn

m Core issue with safe deployment of autonomous driving systems
m Models perform well for the average case but scale poorly due

to low frequency, as well as sparse rewards e =y —

—

@ Hairpin bends, U-Turns

m Rare with difficult to model state space dynamics

@ Create simpler small sample based
models blended with average case model

m cures symptom not the disease

Drago Anguelov (Waymo) - MIT Self-Driving Cars NAQUvYQ



https://www.youtube.com/watch?v=Q0nGo2-y0xY

SCENARIO GENERATION 4
FOR DRIVING SCENARIOS

Use my trained network on real datal \

[ Meta-Sim }

Probabilistic
grammar "¢

Need a labeled
dataset to train
my network!

Distribution
Transformer

car —-)”‘
Snd :
- i
heef Person (ocation T L S g 5y 1 y
~ distribution 222 —
\ Bese Generated synthetic dataset Scientist /

lane lane

https://nv-tlabs.github.io/meta-sim/#

NAQUYQ
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https://nv-tlabs.github.io/meta-sim/
https://carlachallenge.org/

d €{sim, real}

Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Fsim,rear map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure 3 and in Section III-B.

CHALLENGES SIMULATION-REALITY GAP

Handling domain transfer

Deployment

How to create a simulated environment which both
faithfully emulates the real world and allows the agent in
the simulation to gain valuable real-world experience?
Can we map Real world images to Simulation ?

navvya
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CHALLENGES SIMULATION-REALITY GAP

Learning a generative model of reality

environment [« —
- action
VAE (V)
PR
‘ z
observation ! >
' ™y C
world model MDN-RNN (M) >
World models enable agents to construct latent L ) h
space representations of the dynamics of the . t ) action
world, while building/learning a robust ~

control/actuator module over this
representation.

https://worldmodels.github.io/

NAQUYQ :


https://worldmodels.github.io/

CHALLENGES: SAFETY AND REPRODUCIBILITY

@ Safe policies for autonomous agent @ Future standardized benchmarks

m SafeDAgger : safety policy that learns to predict the error m Evaluating autonomous vehicle control algorithms even
made by a primary policy w.r.t reference policy. before agent leaves for real world testing.
m Define a feasible set of core safe state spaces that can be m NHTSA-inspired pre-crash scenarios : Control loss
increamentally grown with explorations without previous action, Longitudinal control after
. . leading vehicle’s brake, Crossing traffic running a red
ReprOd ucible (COde) on benchmark light at an intersection, and many others
= variance intrinsic to the methods hyperparameters init. = |nspiration from the Aeronautics community on risk

m Cross-validation for RL is not well defined as opposed to
supervised learning problems

Carla Challenge 2019



https://carlachallenge.org/

'DRLAD : MODERN DAY DEPLOYMENTS 2 @WAYVE

- ‘ e Vector
el -2 e ot
R ) — onv Layers I
SN o - TTT 3 , | Dense
WL . . layers
_—
— .0 *

e
Root / Actor
Steering & Speed

777 ﬁ
ey Measurement Critic

Mosreve
Company Plain Merge Q @

State Action

=

Steering & Speed

Reward ’ b Command
Overtake Overtake
= Left Right -
Select
Gap
e =¥ Agent maximizes the reward of distance
s travelled before intervention by a safety driver.
:’:‘: Push -
ap
Make Push Continue Abort
Room

Options Graph :

Recovering from a Future Trajectory Prediction on
Trajectory Perturbation Logged Data

Robust Imitation learning using perturbations and simulated expert
variations and aumented imitation loss function nouvo

https://sites.google.com/view/waymo-learn-to-drive/ 20



https://sites.google.com/view/waymo-learn-to-drive/

_______
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- - -
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- R -
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ST e -
S

@ How to design rewards ?

@ How should the problem be decomposed to simplify learning an policy?
@ How to train in different levels of simulations (efficiently)?

@ How to handle long tail cases, especially risk intensive cases

@ How to intelligently perform domain change from simulation to reality ?

@ Can we use imitation to solve the problem before switching to
Reinforcement Learning?

@ How can we learning in a multi-agent setup to scale up learning?

NAQUYQ :



WHERE IS THE HYPE ON DEEP RL

Gartner Hype Cycle for Emerging Technologies, 2017

‘ | Connected Home
Virtual Assistants | (Deep Learrning . Plateau will be reached in:
loT Platform . T, Machine Learning @© lessthan 2 years
Smart Robots N ¥\ Autonomous Vehicles @ 2to5years
: \ 1 Nanotube Electronics
Edge Computing . s 4 @ 5to10years
. Cognitive Computing
Augmented Data . ™ Blockchain /\ more than 10 years
Discovery .Y
Commercial UAVs (Drones)
Smart Workspace ( )
Conversational
Brain-Computer /\ User Interfaces Cognitive Expert Advisors
Interface /X, volumetric
Quantum —— £\ Displays
Computing Digital Twin

Serverless

Expectations

Enterprise Taxonomy
and Ontology Management

Neuromory
Hardware

Deep Reinforcement
Learning

4 Printing /X Intellgence
Augmented
Reality
Smart Dust /X
As of July 2017
Peak of
Innovation Trough of . Plateau of
5 Inflated s
Trigger Expl‘]acztlaiions Disillusionment Slops of Enlightenment Productivity

- ' nauva



WHERE IS THE HYPE ON DEEP RL

Hype Cycle for Emerging Technologies, 2018

/

Expectations

Digital Twin

Biochips

Smart Workspace
Brain-Computer Interface

Autonomous Mabile Robots
Smart Robots:

Deep Neural Network ASICs

Al Paas
Quantum Computing

Deep Nium Nm (DLeep Leamlng)l Plateau will be reached in:
Bartor @ less than 2 years

[oT Platform . 2105 years

Virtual Assistants @ 510 10years

Silicon Anode Batteries
Blockchain /\ mare than 10 years

Connected Home
Autonomous Driving Level 4

Volumetric Displays
Self-Healing System Technology

Autonomous Driving Level 5

Edge Al

Exoskeleton

Blockchain for Data Security

Neuromorphic Hardware

Knowledge Graphs

4D Printing

Artificial General
Intelligence

Smart Fabrics

Augmented Reality

Flying Autonomous Vehicles
Biotech — Cultured or Artificial Tissue

As of August 2018

7 Peak of
Innovation Inflated

Trigger

Trough of Plateau of

- b Sl f Enlight: t o
Expectations Disillusionment ope of Enfightenmen Productivity

Time

Hypes are highly non-stationary

NAQUvYaQ
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LECTURES AND SOURCES

@ Reinforcement Learning: An Introduction Sutton 2018 [book]

@ David Silver’'s RL Course 2015 [link]

@ Berkeley Deep Reinforcement Learning [Course]

@ Deep RL Bootcamp lectures Berkeley [Course]

@ Reinforcement learning and optimal control : D P Bertsekas 2019 [book]

NAQUYQ :


http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
https://sites.google.com/view/deep-rl-bootcamp/lectures
https://web.mit.edu/dimitrib/www/RLbook.html

___________
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https://worldmodels.github.io/
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning
https://sites.google.com/view/waymo-learn-to-drive
https://sites.google.com/view/streetlearn
https://www.mdpi.com/1424-8220/19/3/648/pdf-vor
https://nv-tlabs.github.io/meta-sim/
https://arxiv.org/abs/1904.11621
https://www.youtube.com/watch?v=GOsUHlr4DKE

DEEP Q LEARNING

Autonomous driving agent in TORCS

Current action A;

S >
(State)

Environment: TORCS e-greedy exploration
—— Q and exploitation
\ Current state §; (r===—————————-
: - Q- Network
/ (CNN)

|

i

|

1

|

i

| CurrentQ
Il Q(S,4)

j

1

;

i

;

1

i

1

;

G Si-1. 41,5,

Rewards R,

O s-vAuSuke | S [ B>

State)

(Action)

~®

L=R+
ymaxQ'(S’,a") —
a’

> Q(5.4)

Target
R+ ymaxQ'(S’,a")
a’

Future Rewards
y maxQ'(S’, a’)

>

[ o e
Loss calculation

Experience replay
memory

(Reward)

NQUYQ =



————————

MARKOV DECISION PROCESS

Markovian assumption on reward structure

s¢+1 is conditionally independant of the past states/actions give s¢, a;

MDP
S : Set of States(discrete/continous)
A : Set of Actions
P(s,s") : Transition probabilities
r(s,a) : Reward at state given an action

NAQUYQ =~



CHALLENGES IMITATION LEARNING

Standard - Distribution of steering angles Recovery - Distribution of steering angles Track 2 - Distribution of steering angles Udacity - Distribution of steering angles So urce
5000 . .
Improvin
woo | | | 1 o Y g
2000 4 . .
diversity of
7000 i
1500 A 4000 1 .
steering angle
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1250 4 1500 1
so00 1 3000 11
1000
4000 1 1000
750 2000 4/
3000 1
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1000 1 . | I 250
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-1.0 0.5 0.0 05 10 -0.75-0.50-0.25 0.00 .25 050 075 100 -1.0 -0.5 0.0 05 10 -1.0 -0.5 0.0 05 10

@ | carning from Demonstrations (LfD)/Imitation/Behavioral
Cloning demonstrations are hard to collect

= Measure the divergence between your expert and the current policy
m Give priority in a replay buffer
m [teratively collect samples (DAgger)

= Hierarchical Imitation reduce sample complexity by data aggregation by organizing the action
spaces in a hierarchy

navvya


https://towardsdatascience.com/teaching-cars-to-drive-using-deep-learning-steering-angle-prediction-5773154608f2

