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NAVYA ML TEAM

Deep learning modules on camera and LiDAR

ML team at Navya principally works on:

Q Camera:

m 2D Object detection and drivable zone segm. (2D-OD, MTL)
m Traffic light detection and relevancy (TLDR)
= 3D Monocular object detection (3D-MOD)

Q| iDAR:

m | arge scale semantic segmentation on pointclouds
m |nstance segmentation on pointclouds
m 3D Object detection on pointclouds

@ Semantic Navya Dataset
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@ \\\hat is a Pointcloud

m [ IDAR and 3D sensors
m Perception tasks: classification, detection, segmentation

@ Pointcloud representations for Deep Learning

m Difference between pointclouds and images

= Pointcloud representations
* Range images
» Voxel based representations, Bird Eye View (BEV)
« Continuous representations (KPconv)

@ Navya 3D Segmentation (N3DS) dataset

= Semantic segmentation on pointclouds
= Building an AL pipeline for mining informative samples
m Fvaluation on Semantic-KITTI dataset

: Nnauvvya



WHAT IS A POINTCLOUD

@ A point-cloud is a set of points in 3D
dimensions (cartesian)

m (Generated by LIDARS, Stereo Cameras, single layer proximity
sensors, RADARs

@ | iDARSs : (Light detection and ranging)

= Method for determining ranges (variable distance) by targeting an
object or a surface with a laser and measuring the time for the
reflected light to return to the receiver.

m | [DARs also provide reflectivity or remission channel that measures
the proportion of energy that was returned from a given laser fire

Q@ Pointclouds types

m Single scans at a single time instant t
m Collection of scans that are aligned to create a Map
m Single scans that are converted to occupancy grids (2D)




“iifw LARGE SCALE POINTCLOUDS
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Perceive & Localize

st ] 0=

Lane Detection
Object Detection
Semantic Segmentation
SLAM
HD Maps

Cameras
LIDAR
RADAR
Ultrasonics

Fusion Driving Policy Steering
Scene Understanding Path Planning Acceleration
Behavior Prediction Braking
Map

Sceneinterpretation tasks :

: 1 : Fusions tasks: Reinforcement learning tasks:
:$.Pa’ﬁ?ct)|i§hb£gf€:t§§2m S tracking *Multimodal sensor fusion *Controller optimization
*Semantic segmentation *Odometry *Path planning and Trajectory optimization
Eeersore s i *| ocalization *Motion and dynamic path planning
eLane extraction *Landmark extraction ingh Iex{el driving policy : Highway,
*Relocalization with HD Maps intersections, merges

*HD Maps : 3D map, Lanes, Road topology

*Actor (pedestrian/vehicles) prediction
*Crowd sourced Maps

*Safety and risk estimation

7 NAQUYQ



S % POINTCLOUD PROCESSING AT NAVYA

Large scale pointcloud semantic segmentation are fundamental

building blocks in modern AD perception stacks:

m Semantic Map layer in modern HDMaps
= Drivable zone extraction & Path planning
m Semantic re-localization and others...

Raw Maps from clients Labelled maps
Compressing Semantic-KITTI: Reducing dataredundancy on pointclouds by Active learning, L (GENC
Anh Duong, Alexandre Almin, Leo Lemarie, B Ravi Kiran, NeurlPS 2021 Le calcul e au service de ta connaissance
This work was granted access to the HPC resources of [TGCC/CINES/IDRIS] under the allocation
2021- [AD011012836] made by GENCI (Grand Equipement National de Calcul Intensif) nQUVO



- =
- -

-
- o .
S, pr e
Pl o Pl
e e e T e -
Pl il
- - F T =

. e

“larloaa
- - .=

@ Semantic segmentation of large-scale maps in 3D
@ Object detection and tracking online and offline in 3D

@ Pointcloud registration and SLAM (building maps)

9 Nnauvvya
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“iih. 2% KEY CHALLENGES POINTCLOUD PROCESS

@ Pointclouds are sets : 3d points can arrive in different orders

m There is no pixel grid or 3D grid that is inherently used to create pointclouds

@ Pointclouds capture by LIDAR/3D scanners are 3D points
sampled from 2D surfaces in a 3D world

@ Pointclouds varyin density based on the sensor and its spatial
resolution and position of the ego vehicle w.r.t surface

@ Pointclouds are usually collected sequentially on the vehicle,
this produces motion ghosts

10 Nnauvvya



BEFORE DEEP LEARNING WAVE

Pointcloud semantic segmentation

3D Point » Neighborhood
Cloud

N xd N xd
N xd’
» Feature ‘ Feature ‘ Supervised
Selection Extraction Selection Classification
7 approaches 21 features 7 approaches 10 classifiers

1

J

Labeled
3D Point Cloud

J

Fig. 1. The proposed framework and the quantity of attributes/approaches taken into account for evaluation.

Compute k-neighbourhood
for each pointin
pointcloud

Evaluate eigen values
Calculate hand engineered
geometric features

Classify point
Refine/post-process
(MRFs/KNNs)

Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient
classifiers Martin Weinmann, Boris Jutzi, Stefan Hinz, Clément Mallet ISPRS 2015
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e s POINTCLOUD REPRESENTATIONS FOR DEEP LEARNING

Represent them in an image format and then use classic semantic segmentation architectures
W ork with spherical range images (using a LIDAR's inherent structure)

Introduce a grid artificially : Voxel Grids by partitioning the space into 3D cells

Set based methods (To handle permutation invariance) : PointNet, PointNet++

Define convolution in a continuous Space (KPConv/ConvPoint)

Define a graph on pointclouds and work with Graph based CNN architectures (Superpoint

Graphs)

Hybrid architectures : Point-Voxel CNN for Efficient 3D Deep Learning(PVCNN), Cylinder3D

(set based + voxel based)

12
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RGB mesh

Preprocessing

INPUT

.‘ﬂ!

Composite
mesh

7 MULTIVIEW REPRESENTATATION

A. Boulch et al. /Computers & Graphics 000 (2017) 1-10

ﬁt:‘ Image
pairs

~
-

Mesh view

generation

Semantic

labeling

Semantized
images

Fig. 2. Work-flow of the approach.

SnapNet: 3D point cloud semantic labeling with 2D deep segmentation

13

networks, Alexandre Boulch, Joris Guerry, Bertrand Le Saux, Nicolas Audebert

Semantized

&l point cloud

Back prdjection
and accumulation

NAQUYQ
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S 2% VOXEL BASED METHODS

Q Create a fixed discretization of 3d
space by voxelization

= Convolutional filters now operate in 3D space 3 strides
m Feature maps are all 3D

m Costly in memory even for small voxel sizes (memory
explodes)

= Rarely used in production

Dense 3D ConvNet  Dense 3D ConvNet

@ \ore recent work

m Sparse convolutions (SparseConv)

OctNet

(a) Layer 1: 32 (b) Layer 2: 163 (c) Layer 3: 83

OctNet: Learning Deep 3D Representations at High Resolutions 2017
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks 2020

14 Nnauvvya



“ZE RANGE IMAGE REPRESENTATION 1\‘ (aer beams

Rt Pointcloud representation

fRange image
(u) B ( %[1 — arctan(y, z)7 '] w ) y
v [1 o (arcsin (Z r 1) + f up)f - 1] h Figure 2. The illustration of the native range image.

2D range image

—y Spherical projection _, g
segmentation network

(preprocessing)

<« Post-processing

2D segmentation output mask

3D segmentaton output mask

NAQUYQ
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(a
age and its target target

(c)

7 DATA AUGMENTATION IN POINTCLOUDS

Using the range image representation

LRy &

(b) Random masks out rectangle regions.

o000

) Random dropout mask applied on range im-

Gaussian noise applied on depth of range image(d) Gaussian noise applied on remission channel
of range image

(e) Random rotate range image and its target

NAQUYQ
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DATA AUGMENTATION IN POINTCLOUDS

Using the range image representation

(f) Random copy and paste instances from one scan to another within a batch

(glelV] Jo



=V

19

(((

(a) Cartesian BEV (b) Polar BEV

Two BEV quantization strategies. Each grid cell on the image
denotes one featurein a feature map
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18 PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation CVPR 2020

Comparing Camera, LiDAR-
Spherical, LiDAR-BEV views

(a) RGB camera image (e) LIDAR spherical map

s Pt

(b) LIDAR sparse depth map

(d) LiDAR dense intensity map (f) LIDAR BEV density map

Fig. 6: RGB image and different 2D LiDAR representation
methods. (a) A standard RGB image, represented by a pixel
grid and color channel values. (b) A sparse (front-view)
depth map obtained from LiDAR measurements represented
on a grid. (c) Interpolated depth map. (d) Interpolation of
the measured reflectance values on a grid. (e) Interpolated
representation of the measured LiDAR points (surround view)
on a spherical map. (f) Projection of the measured LiDAR
points (front-facing) to bird’s eye view (no interpolation).

Ref:https://arxiv.org /pdf/1902.07830.pdf

navvya
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POINTNET/POINTNET++

PointNet: Deep Learningon Point Sets for 3D Classification and Segmentation 2017
PointNet++: Deep Hierarchical Feature Learning on Point Setsin a Metric Space

Classification Network
input mlp (64,64) feature mlp (64,128,1024) max lp
-g transform ::t;'_—’ transform pool 1004 (512,256.k)
: 3] o =T
L 2 shaed | O [ B | shaea | w02 |DE ]
: , global feature
i : e ; - -
. ....="".___._._ outputscores -
:
= £ o
nix 1088 shared ﬁ Shﬂl’e-d E E
8 =
— g :
mlp (512,256,128) mlp (128,m)
skip link concatenation 2
2

unit

interpolate :
P pointnet

Classification

—_— — —

—

sampling &~ pointnet ~ sampling&  pointnet
grouping grouping
AN J\. J
Y Y
set abstraction set abstraction

Upper-bound Shapes ~ Critical Point Sets

Figure 7. Critical points and upper bound shape. While critical
points jointly determine the global shape feature for a given shape,
any point cloud that falls between the critical points set and the
upper bound shape gives exactly the same feature. We color-code
all figures to show the depth information.



53 CONTINOUS CONVOLUTION ARCHITECTURES
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Figure 2. Comparison between an image convolution (left) and a KPConv (right) on 2D points for a simpler illustration. In the image, each
pixel feature vector is multiplied by a weight matrix (W)} )<k assigned by the alignment of the kernel with the image. In KPConv, input

points are not aligned with kernel points, and their number can vary. Therefore, each point feature f; is multiplied by all the kernel weight
matrices, with a correlation coefficient h;;. depending on its relative position to kernel points.
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Figure 3. Deformable KPConv illustrated on 2D points.
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[} Festures
KPConv

Sirided KPConv
Fully conmected
Newr. Ups. + Concet.
1Conv

w c
—

KPConv: Flexible and Deformable Convolution for Point Clouds ICCV 2019 Hugues Thomas et al

ConvPoint: Continuous Convolutions for Point Cloud Processing Boulch 2019
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¥ CONTINOUS CONVOLUTION ARCHITECTURES
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@ Asymmetry Residual Block @ DownSample Block Prediction

Point Cloud

Poimc&oud\EI_»H_’El/ E El—»lﬂ_,lﬁ_’ : pi ; B— @upsammemocki D;:cen:ion-becomoos'ifionbasadconlxlmdding ﬂ l
: Point-wise Loss . . % -
' | | o B0 o B

NtemrsstesesmEEEREEEEESSesEEEREEREERISSEsEEERREREESSSesEmmEERREEEE : -
I M

Low-level Features
Asymmetrical Residual Block
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Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR
NAQUYQ

L Semantic Segmentation

Dimension-decomposition based Context Modeling
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S 72 POINTCLOUD SEMANTIC SEGMENTATION DATASET

_____
- - ,

_ - = Semantic
"d - ' , ¢ KlTT| Semantic Segmentation | Panoptic Segmentation Pano tIC

nuscenes

St

St-4,5t-3,5t-2,5t-1. St .

i- 4 W 3
[l road |l sidewalk [l parking [ car |
B vegetation [ terrain ] trunk [ building
B otherstructure [ other-object

@ | 5rge scale pointcloud sequences with semantic labels per point

= Annotations include semantic class along with instance ID information
= Panoptic-Nuscenes provides panoptic tracklet level labels which are temporally consistent across pointcloud scans

m Established Architectures : Rangenet++, Salsanext, Cylinder3D

2 Nnauvvya
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http://www.semantic-kitti.org/dataset.html
http://www.semantic-kitti.org/dataset.html
https://arxiv.org/abs/2109.03805

DATASET SIZE

Semantic segmentation on pointclouds

Dataset Cities Sequences Annotation Sequential
(Or Points)

Semantic 1x Germany 22 (long) 28 Point, Instance Yes
KITTI

Panoptic Boston 1000 32 Point, Box, Yes
Nuscenes Singapore 40K scans Instance

PandaSet 2x USA 100 37 Point, Box Yes
Semantic 22x Citiesin 10 Countries 22 (long) 24 Point, Yes

France, Swiss, US, Denmark,
Japan, Germany, Australia,
Israel, Norway, New Zealand

Navya (ours™) 50K scans Instance

*in construction



NAVYA 3D SEGMENTATION(N3DS) DATASET [ Playment

by TELUS International
Large scale semantic segmentation dataset
File Tools View Preferences Help paris_l_annotated.dat (Multi)
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