
Hierarchies and climbing energies1

Jean Serra, B. Ravi Kiran and Jean Cousty2
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Abstract. A new approach is proposed for finding the ”best cut” in5

a hierarchy of partitions by energy minimization. Said energy must6

be ”climbing” i.e. it must be hierarchically and scale increasing. It7

encompasses separable energies [5], [9] and those which composed under8

supremum [14], [12]. It opens the door to multivariate data processing9

by providing laws of combination by extrema and by products of10

composition.11

1 Introduction12

A hierarchy of image transforms, or of image operators, intuitively is a series of13

progressive simplified versions of the said image. This hierarchical sequence is14

also called a pyramid. In the particular case that we take up here, the image15

transforms will always consist in segmentations, and lead to increasing partitions16

of the space. Now, a multi-scale image description can rarely be considered as an17

end in itself. It often requires to be completed by some operation that summarizes18

the hierarchy into the ”best cut” in a given sense. Two questions arise then,19

namely:20

1. Given a hierarchy H of partitions and an energy ω on its partial partitions,21

how to combine classes of this hierarchy for obtaining a new partition that22

minimizes ω?23

2. When ω depends on integer j, i.e. ω = ωj , how to generate a sequence24

of minimum partitions that increase with j, which therefore should form a25

minimum hierarchy?26

These questions have been taken up by several authors. The present work27

pursues, indeed, the method initiated by Ph. Salembier and L. Garrido for28

generating thumbnails [9], well formalized for additive energies by L.Guigues29

et al [5], [5] and extended by J. Serra in [10]. In [9], the superlative ”best”, in30

”best cut”, is interpreted as the most accurate image simplification for a given31

compression rate. We take up this Lagrangian approach again in the example of32

section below. In [5], the ”best” cut requires linearity and affinity assumptions.33

However, one can wonder whether these two hypotheses are the very cause34

of the properties found by the authors. Indeed, for solving problem 1 above,35

the alternative and simpler condition of hierarchical increasingness is proposed36

in [10], and is shown to encompass optimizations which are neither linear nor37
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Fig. 1. Left: Initial image, Right: Saliency map of the hierarchy H obtained from image.

affine, such as P. Soille’s constraint connectivity [12], or Zanoguerra’s lasso based38

segmentations [14].39

Our study is related to the ideas developed by P. Arbelaez et al [1] in learning40

strategies for segmentation. It is also related to the approach of J. Cardelino et41

al [3] where Mumford and Shah functional is modified by the introduction of42

shape descriptors. Similarly C. Ballester et al. [2] use shape descriptors to yield43

compact representations.44

The present paper aims to solve the above questions, 1 and 2. The former was45

partly treated in [10], where the concept of h-increasingness was introduced as a46

sufficient condition. More deeply, it is proved in [10] that an energy satisfies the47

two minimizations of questions 1 and 2 if and only if it is climbing. The present48

paper summarizes without proofs the major results of the technical report [10],49

yet unpublished. The results of [10] are briefly reminded in section 2; the next50

section introduces the climbing energies (definition 3) and states the main result51

of the text (theorem 2); the last section, number 4, develops an example.52

2 Hierarchical increasingness (reminder)53

The space under study (Euclidean, digital, or else) is denoted by E and the set54

of subsets of E by P (E). A partition π(S) associated with a set S ∈ P(E) is55

called partial partition of E of support S [8]. The family of all partial partitions56

of set E is denoted by D(E), or simply by D. A hierarchy H is a finite chain of57

partitions πi, i.e.58

H = {πi, 0 ≤ i ≤ n | i ≤ k ≤ n⇒ πi ≤ πk}, (1)

where πn is the partition {E} of E in a single class.59

The partitions of a hierarchy may be represented by their classes, or by the60

saliency map of the edges[6],[4], as depicted in Figure 1, or again by a family tree61

where each node of bifurcation is a class S, as depicted in Figure 2. The classes62

of πi−1 at level i− 1 which are included in class Si are said to be the sons of Si.63

Denote by S(H) the set of all classes S of all partitions involved in H. Clearly,64

the descendants of each S form in turn a hierarchy H(S) of summit S, which is65

included in the complete hierarchy H = H(E).66
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Fig. 2. Left, hierarchical tree; right, the corresponding space structure. S1 and S2 are
the nodes sons of E, and H(S1) and H(S1) are the associated sub-hierarchies. π1 and
π2 are cuts of H(S1) and H(S1) respectively, and π1 t π2 is a cut of E.

2.1 Cuts in a hierarchy67

Any partition π of E whose classes are taken in S defines a cut in hierarchy H.68

The set of all cuts of E is denoted by Π(E) = Π. Every ”horizontal” section69

πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,70

such as π(S1) and π(S2), drawn with thick dotted lines in Figure 2. Similarly, the71

partition π(S1) t π(S2) generates a cut of H(E). The symbol t is used here for72

expressing that groups of classes are concatenated. Each class S may be in turn73

the root of sub-hierarchy H(S) where S is the summit, and in which (partial)74

cuts may be defined. whose it is the summit. Let Π(S) be the family of all cuts75

of H(S). The union of all these cuts, when node S spans hierarchy H is denoted76

by77

Π̃(H) = ∪{Π(S), S ∈ S(H)}. (2)

2.2 Cuts of minimum energy and h-increasingness78

Definition 1. An energy ω : D(E)→ R+ is a non negative numerical function79

over the family D(E) of all partial partitions of set E. An optimum cut π∗ ∈80

Π(E) of E, is one that minimizes ω, i.e. ω(π∗) = inf{ω(π) | π ∈ Π(E)}.81

The problem of unicity of optimum cut is not treated here (refer [11]).82

Definition 2. [10] Let π1 and π2 be two partial partitions of same support,83

and π0 be a partial partition disjoint from π1 and π2. An energy ω on D(E) is84

said to be hierarchically increasing, or h-increasing, in D(E) when, π0, π1, π2 ∈85

D(E), π0 disjoint of π1 and π2, we have86

ω(π1) ≤ ω(π2) ⇒ ω(π1 t π0) ≤ ω(π2 t π0). (3)

Implication (3) is illustrated in Figure 3. When the partial partitions are87

embedded in a hierarchy H, then Rel.(3) allows us an easy characterization of88
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Fig. 3. Hierachical increasingness.

the cuts of minimum energy of H, according to the following property, valid for89

the class H of all finite hierarchies on E.90

Theorem 1. Let H ∈ H be a finite hierarchy, and ω be an energy on D(E).91

Consider a node S of H with p sons T1..Tp of optimum cuts π∗1 , ..π
∗
p. The cut of92

optimum energy of summit S is, in a non exclusive manner, either the cut93

π∗1 t π∗2 .. t π∗p , (4)

or the partition of S into a unique class, if and only if S is h-increasing (proof94

given in [11])95

The condition of h-increasingness (3) opens into a broad range of energies,96

and is easy to check. It encompasses that of Mumford and Shah, the separable97

energies of Guigues [5] [9], as well as energies composed by suprema [12]98

[14], and many other ones [11]. Moreover, any weighted sum Σλjω
j of h-99

increasing energies with positive λj is still h-increasing energies, as well as,100

under some conditions, any supremum and infimum of h-increasing energies101

[11]. The condition (3) yields a dynamic algorithm, due to Guigues, for finding102

the optimum cut π∗(H) in one pass [5].103

2.3 Generation of h-increasing energies104

The energy ω : D(E)→ R+ has to be defined on the family D(E) of all partial105

partitions of E. An easy way to obtain a h-increasing energy consists in taking,106

firstly, an arbitrary energy ω on all sets S ∈ P(E), considered as one class partial107

partitions {S}, and then in extending ω to all partial partitions by some law of108

composition. The h-increasingness is introduced here by the law of composition,109

and not by ω[P(E)]. The first laws which come to mind are, of course, addition,110

supremum, and infimum, and indeed we can state:111

Proposition 1. Let E be a set and ω : P(E)→ R+ an arbitrary energy defined112

on P(E), and let π ∈ D(E) be a partial partition of classes {Si, 1 ≤ i ≤ n}.113

Then the three extensions of ω to the partial partitions D(E)114

ω(π) =
∨
i

ω(Si), ω(π) =
∧
i

ω(Si), and ω(π) =
∑
iω(Si), (5)
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are h-increasing energies.115

A number of other laws are compatible with h-increasingness. One could116

use the product of energies, the difference sup-inf, the quadratic sum, and their117

combinations. Moreover, one can make depend ω on more than one class, on the118

proximity of the edges, on another hierarchy, etc..119

3 Climbing energies120

The usual energies are often given by finite sequences {ωj , 1 ≤ j ≤ p} that121

depend on a positive index, or parameter, j. Therefore, the processing of122

hierarchy H results in a sequence of p optimum cuts πj∗, of labels 1 ≤ j ≤ p. A123

priori, the πj∗ are not ordered, but if they were, i.e. if124

j ≤ k ⇒ πj∗ ≤ πk∗, j, k ∈ J, (6)

then we should obtain a nice progressive simplification of the optimum cuts. For125

getting it, we need to combine h-increasingness with the supplementary axiom126

(7) of scale increasingness, which results in the following climbing energies.127

Definition 3. We call climbing energy any family {ωj , 1 ≤ j ≤ p} of energies128

over Π̃ which satisfies the three following axioms, valid for ωj , 1 ≤ j ≤ p and129

for all π ∈ Π(S), S ∈ S130

– i) each ωj is h-increasing,131

– ii) each ωj admits a single optimum cutting,132

– iii) the {ωj} are scale increasingness, i.e. for j ≤ k, each support S ∈ S and133

each partition π ∈ Π(S), we have that134

j ≤ k and ωj(S) ≤ ωj(π)⇒ ωk(S) ≤ ωk(π), π ∈ Π(S), S ∈ S. (7)

Axiom i) and ii) allow us to compare the same energy at two different levels,135

whereas iii) compares two different energies at the same level. The relation (7)136

means that, as j increases, the ωj ’s preserve the sense of energetic differences137

between the nodes of hierarchy H and their partial partitions. In particular, all138

energies of the type ωj = jω are scale increasing.139

The climbing energies satisfy the very nice property to order the optimum140

cuts with respect to the parameter j:141

Theorem 2. Let {ωj, 1 ≤ j ≤ p} be a family of energies, and let πj∗ (resp.142

πk∗) be the optimum cut of hierarchy H according to the energy ωj (resp. ωk).143

The family {πj∗,1 ≤ j ≤ p} of the optimum cuts generates a unique hierarchy144

H∗ of partitions, i.e.145

j ≤ k ⇒ πj∗ ≤ πk∗, 1 ≤ j ≤ k ≤ p (8)

if and only if the family {ωj} is a climbing energy (proof given in [11]).146
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Such a family is climbing in two senses: for each j the energy climbs pyramid147

H up to its best cut (h-increasingness), and as j varies, it generates a new148

pyramid to be climbed (scale-increasingness). Relation (8) has been established149

by L. Guigues in his Phd thesis [5] for affine and separable energies, called by150

him multiscale energies. However, the core of the assumption (7) concerns the151

propagation of energy through the scales (1...p), rather than affinity or linearity,152

and allows non additive laws. In addition, the set of axioms of the climbing153

energies 3 leads to an implementation simpler than that of [5].154

4 Examples155

We now present two examples of energies composed by rule of supremum and156

another by addition. In all cases, the energies depend on a scalar parameter157

k such that the three families {ωk} are climbing. The reader may find several158

particular climbing energies in the examples treated in [5],[14],[13],and [9].159

4.1 Increasing binary energies160

The simplest energies are the binary ones, which take values 1 and 0 only. We161

firstly observe that the relation π v π1, where π1 = π t π′ is made of the162

classes of π plus other ones, is an ordering. A binary energy ω such that for all163

π, π0, π1, π2 ∈ D(E)164

ω is v-increasing, i.e. ω(π) = 1 ⇒ ω(π t π0) = 1

165

ω(π1) = ω(π2) = 0 ⇒ ω(π1 t π0) = ω(π2 t π0),

is obviously h-increasing, and conversely. Here are two examples of this type.166

Large classes removal One wants to suppress the very small classes, considered167

as noise, and also the largest ones, considered as not significant. Associate with168

each S ∈ P(E) the energy ωk(〈S〉) = 0 when area(S) ≤ k, and ωk(〈S〉) = 1 when169

not, and compose them by sum, π = t 〈Si〉 ⇒ ωk(π) =
∑
iω
k(〈Si〉). Therefore170

the energy of a partition equals the number of its classes whose areas are larger171

than k. Then the class of the optimum cut at point x ∈ E is the larger class of172

the hierarchy that contains x and has an area not greater than k.173

Soille-Grazzini minimization [13],[12] A numerical function f is now associated174

with hierarchy H. Consider the range of variation δ(S) = max{f(x), x ∈175

S} − min{f(x), x ∈ S} of f inside set S, and the h-increasing binary energy176

ωk(〈S〉) = 0 when δ(S) ≤ k, and ωk(〈S〉) = 1 when not. Compose ω according177

the law of the supremum, i.e. π = t 〈Si〉 ⇒ ωk(π) =
∨
i

ωk(〈Si〉). Then the class178

of the optimum cut at point x ∈ E is the larger class of H whose range of179

variation is ≤ j. When the energy ωk of a father equals that of its sons, one180

keeps the father when ωk = 0, and the sons when not.181
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4.2 Additive energies under constraint182

The example of additive energy that we now develop is a variant of the creation183

of thumbnails by Ph. Salembier and L. Garrido [9]. We aim to generate ”the184

best” simplified version of a colour image f , of components (r, g, b), when the185

compression rate is imposed equal to 20. The bit depth of f is 24 and the size of f186

is = 600x480 pixels. A hierarchy H has been obtained by previous segmentations187

of the luminance l = (r+g+b)/3 based on [4]. In each class S of H, the reduction188

consists in replacing the function f by its colour mean m(S). The quality of this189

approximation is estimated by the L2 norm, i.e.190

ωµ(S) =
∑
x∈S
‖ l(x)−m(S) ‖2 . (9)

The coding cost for a frontier element is ' 2, which gives, for the whole S191

ω∂(S) = 24+ | ∂S | (10)

with 24 bits for m(S). We want to minimize ωµ(S), while preserving the cost.192

According to Lagrange formalism, the total energy of class S is thus written193

ω(S) = ωµ(S) +λjω∂(S). Classically one reaches the minimum under constraint194

ω(S) by means of a system of partial derivatives. Now remarkably our approach195

replaces the of computation of derivatives by a climbing. Indeed we can access196

the energy a cut π by summing up that of its classes, which leads to ω(π) =197

λjωµ(π) + ω∂(π). The cost ω∂(π) decreases as λj increases, therefore we can198

climb the pyramid of the best cuts and stop when ω∂(π) ' n/20. It results in199

Figure 4 (left), where we see the female duck is not nicely simplified.200

However, there is no particular reason to choose the same luminance l for201

generating the pyramid, and later as the quantity to involve in the quality202

estimate (9). In the RGB space, a colour vector −→x (r, g, b) can be decomposed203

in its two orthogonal projections on the grey axis, namely
−→
l of components204

(l/3, l/3, l/3), and on the chromatic plane orthogonal to the grey axis at the205

origin, namely −→c of components (3/
√

2)(2r − g − b, 2g − b − r, 2b − r − g). We206

have −→x =
−→
l + −→c . Let us repeat the optimization by replacing the luminance207

l(x) in (9) by the module |−→c (x)| of the chrominance in x. We now find for best208

cut the segmentation depicted in Figure 4, where, for the same compression rate,209

the animals are correctly rendered, but the river background is more simplified210

than previously.211

5 Conclusion212

This paper has introduced the new concept of increasing energies. It allows to find213

best cuts in hierarchies of partitions, encompasses the known optimizations of214

such hierarchies and opens the way to combinations of energies by supremum, by215

infimum, and by scalar product of Lagrangian constraints. This work was funded216

by Agence Nationale de la Recherche through contract ANR-2010-BLAN-0205-217

03 KIDIKO.218
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Fig. 4. Left: Best cut of Duck image by optimizing by Luminance, Right: and by
Chrominance.
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