Constrained Optimization on Hierarchies of partitions

Bangalore Ravi KIRAN

CAOR Ecoles Des Mines
16 Jan 2015

Overview

- Notations and structures
- Review on Optimization on Hierarchies
- Dynamic Programming
- Braids of Partitions
- Energetic Order and Energetic-Lattices
- Reviewing Braids
- Constrained Optimization

Braid of Partitions

A Braid B with a monitoring hierarchy H, is a family of partitions, where the refinement supremum between two partitions in B is an element of H.

$$\forall \pi_1, \pi_2 \in B \Rightarrow \pi_1 \vee \pi_2 \in \Pi(H, E) \setminus \{E\}$$

Family of partitions

Monitor hierarchy H

$$B_1 = \{\pi_1, \pi_2, \pi_3\} \checkmark \quad B_2 = B_1 \cup \pi_x X$$

Generalizing Parent-Child Relations

Calculating Supremum of Partitions (components of intersection graph)

Braid: Composing hierarchies

Input Image

Watershed hierarchy (Area Attribute)

Watershed hierarchy (Volume Attribute)

Composing Hierarchies

[Kiran-Serra PRL 2014]

Braid: Composing hierarchies

Monitor Hierarchy

Watershed hierarchy (Area Attribute)

Watershed hierarchy (Volume Attribute)

Why Braids

- Uncertain partition boundaries \implies many possible partial partitions
- Multivariate segmentations and superpixel segmentations.
- Composition of hierarchical segmentations
- The dynamic program works for the family of braids, and ensures better infimum for over composition of hierarchies with non-trivial monitors.

No single GT is a refinement of the mean-shift segmentation, but their suprema are!

[Unnikrishnan et al. 2007]

Comparing Segmentations

Braids accommodate variablity in both Expert and Algorithm segmenations

Constraint Partition Sets: Braid Structure

h-increasingness on BOP

$$\pi_1(S)$$

 $\nleq \qquad \pi_2(S)$

$$\pi_1(S) \sqcup \pi_0 \nleq \pi_2(S) \sqcup \pi_0$$

$$\omega(\pi_1(S)) \le \omega(\pi_2(S))$$

$$\Rightarrow$$

$$\omega(\pi_1(S) \sqcup \pi_0) \le \omega(\pi_2(S) \sqcup \pi_0)$$

 $\pi_2^*(S)$

[PhD Thesis]

Highlights

- 1. Braids generalize refinement relations on hierarchies
- 2. Monitor hierarchy might not be part of the Braid itself, but is inherent when calculating supreumum of partitions.
- 3. Braids provide an algorithm independent partition organization structure.
- 4. Braids are inherent structures in tree-structured optimization problems
- 5. Braids still maintain local-global structure for dynamic programs.