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The goal

e We have a family of partitions that segment an image.
e How to combine them in order to obtain the best possible segmentation?

e (Classically, one associates an energy w with each partition and one takes
the partition with smallest energy (e.g. Mumford-Shah).

What does this mean really?
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Unicity problem

e For example, let us take a small 5x5 picture and an energy whose dynamic
range is 1000.

o As there are 4.6 x 101® different partitions of the 5x5 square, one finds on
average :

4,600,000,000,000,000 partitions by energy !

i.e. 30 billions times the distance to the moon in kilometres :)

e The methods which work well introduce additional implicit assumptions
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How to get out ?

e We keep down the number of possible partitions by restricting them to
the cuts of a hierarchy.

e We structure these cuts in a lattice which depends on the energy w, which
ensures a unique minimum.

e We must find a way for reaching easily this minimum.

e When there are several energies, or an energy which depends on a positive
parameter, we must find out how to combine them.

...that will be the plan of the talk
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Plan

Hierarchies
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Hierarchy, or pyramid, of partitions

e A hierarchy of partitions is a chain of partitions

H={m,0<i<n}witht<j=m <

e The partitions are ordered by refinement

<

m 2
The assumption: 7 has a finite number of classes, called leaves.
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Hierarchy, or pyramid, of partitions

e Associate with hierarchy H the family S of all classes S;(z) for all parti-
tions.
S={S(z),zr € E,0<i<p}

o Every family § of indexed sets induces a hierarchy iff for ¢« < j

z,y € E= Si(x) CS;(y) or S;(x) D S,(y) or Si(x)NS;(y) =10

A relation equivalent to an ultra-metric on the classes of S .



Representation of a hierarchy

T2 (E) m3(E)

Sub-hierarchy
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Energy and pyramid

The search for an optimal cut rests on three independent entities:

e a pyramid H of partitions of space E

e a function f on E

( f may have been used, or not, to generate the pyramid),
e an energy w i.e. a non negative function

w:D—=RT

of the set D of the partial partitions of E into R™.
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Plan

Singular energies and lattices

Barcelona June 2013
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Energetic ordering on cuts

Cut 7y is said to be less energetic than 75 when, in each class S of

m = m V mo the energy of 7 in S is smaller than that of w2 in S.

w =20 w =10
1] -
w =3 w="17
| | | o
‘ ‘ ‘ 7T1\/7T2

One writes m1 <, 79
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Energetic ordering and singular energy

Is the relation m; <, mo an ordering 7

Proposition: The relation m <, my defines an ordering, called energetic,
iff the energy w is singular.

Energy w is singular when
o cither w(S) > Vw(n(S))
o or w(S) < Vw(r(S))

71 (T) (T (S}
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Energetic Lattice

The energetic ordering induces a lattice where, in each class of m; V my the
most energetic partial partition is chosen.

w =0 w = 10

I | | | I I 79
w=3 w =12

| | | TV T2

I || | I | | I 1 Vi T2
w =06 w =12

Barcelona June 2013 14



Energetic Lattice

The energetic lattice ( <, V., ) answers the unicity question, since:

When an energy is singular then one cut only has a minimum energy.

In this optimal cut, each class S is less energetic than all possible partial
partitions of support S.

Such a minimum is thus stronger than the usual energetic minima since
it is both local and global.

It just remains to find out how to get it :)
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Plan

Optimal cuts and hierarchical increasingness

Barcelona June 2013
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Hierarchical increasingness

e How to reach the cut of minimal energy 7

e Introduce the hierarchical increasingness (h-increasingness) axiom between
fathers and sons, as the implication:

7T1(S) 7'{'2(8) Wl(S)uﬂ'O WQ(S)H'J’TO

w(m(S)) < w(m(S)) w(m(S) Umg) < w(me(S) U mg)

Barcelona June 2013 17



Climbing energies

Energy is said to be climbing when it is both
e Singular (unique optimal cut), and
e h-increasing (tractable access to the optimal cut).
e Proposition: When energy w is climbing then the optimal cut of the
sub-hierarchy H(S) is
either w(71) U n (1) Un(13) or S itself

e The optimal cut for the whole space E is then obtained by progressively
climbing from the leaves level to the root.
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Hierarchical increasingness

e The energies holding on partial partitions are far from being always h-
Increasing.
e Consider the partial partitions of support S.
w(m(S)) =1 when 7(S) has atmost two components,

w(m(S)) = 0 when 7(S) when not.

The energy w above is obviously not h-increasing:

Barcelona June 2013 19



Algorithms

e One scans all nodes of H in one ascending pass according to a lexicographic
order of H;

e On determines at each node S a temporary optimal cut of H by comparing
the energy of S with those of the (already scanned) sons T} of S.
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Plan

Compositions of energy by sums and by suprema

Kiran-Serra, Barcelona, June 2013
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How to construct a climbing energy?

e To get an h-increasing energy, it suffices to start from an arbitrary energy

on S
T3

Children
Ty UTs U TR

S

T
Parent -
Tl

e and to extend it to the partial partitions of support S and of classes
Ty,T5, T3 by admissible composition rules, e.g.

w(m) =w(Ty) + w(Tz) + w(T3) or w(n) = w(Ty) Vw(T) Vw(Ts)
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How to construct a climbing energy?

e Examples of h-increasing energies:

Addition: Mumford-Shah: Salembier, Guigues

Supremum: Soille-Grazzini, Akcay-Aksoy, wavelets.

e When w is h-increasing, and when
W(Tl L] T2 L Tg) = W(S)

e then we generate a climbing energy by taking either the father or the sons
by any external constraint independent of w

e For example, by taking always the father, or choosing according to the
number of sons (e.g. textures).
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Sum generated energies
(Salembier-Guigues)

e The value w(S) at node S is compared to the sum ) |, w(7}) of the energies
of the sons:

o if w(S) <), w(Tk) , one keeps the class S,

e if not replace by its sons

The optimal cut is then theéxwnioncsf:the remaining classes. 24
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An example : Mumford-Shah

T3

Children
Ty UTs U TR

S

Parent

T,

Ty

w(S,A) = Z1gkgp we (Tk) + )\Z1gk§p wa(Tk)

with w,(T) = [

xZ

o £ (@) — w2 fidelity term,
and wy(T) = |0T| regularity term

Barcelona June 2013
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Optimal Cut: Luminance

Initial Image Optimal Cut (Luminance)

w(S,A) = Z1§k;gp wso(Tk) + A Zlgkgp wo(Tk)

with luminance wy,(T) = [ _. [|{(z) — u(T)||* fidelity term.
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Luminance-Chrominance

/Luminance axis

Initial Image

Chromatic
plane
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with luminance (top right)

wo(T) = [rer [11(z) = w(D)I
fidelity term.
with chrominance (bottom right)

wo(T) = Y2 foer lei(@) — wi(T)I°

fidelity term.

Barcelona




Another example: color and texture

w(S,A) = Zlgkgp we (1)) + A Z1§k§p wo(Ty) + pw,({Tk })
with chrominance

wo(T) = 5 [ lles() — (1) fidelity torm.

wy(T) = |T'| Regularization term - contour length

w,({T}) =>({|T|} — #({|T']}))* Regularization term - texture regularity
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Another example: color and texture

-
XN
3

ovis

L e
Py '
- .‘t.;. n

Initial Image

Partition with min variation
n component sizes
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her example: color and texture

R - o=

Initial Image

w(S, A) = Zlgkgp we (1) + )\Z1§k§p wo(Tk) + pw,({Tk})

Right: optimal cuts:
top, very uniform textures ( high u )
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Another example color and texture

Initial -Ima‘g_;e‘

W(S,A) =2 1<pcpWoTh) + A2 1<y Wa(k) + pr({Tkz})

Right: optimal cuts:
- top, very uniform textures ( high u )
- bottom (weaker p )

Barcelona June 20




Composition of additive energies

Let {w;,? € I'} be a family of additive and singular energies, and {\;,7 € I}
a family of positive weights.

Then the weighted sum w = > A\;w; turns out to be climbing.
This property allows us to add, or to change, terms in the energies of

Mumford-Shah type.

For example, for a color image, if the pyramid is obtained by watersheds of
the luminance, use the chrominance for fidelity term.
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Additive energies and graph-cuts

e The definition of a flow through G requires the data of

— a source: the leaves, with infinite weight,
— a sink: the root,

— and a flow capacity at each node.
e The flows of two separated paths are

— independent,

— and upper-bounded by the lowest capacity along the path.

e When two lines meet at a (father) node, the capacities of the sons are
added and compared to that of the father. On keeps the largest.
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Min-cut versus optimal cut
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Min-cut versus optimal cut

The minimum value on each path is subtracted from each node in the path,
up till the point where we obtain a cut that separates S and T

Barcelona June 2013 37



Min-cut versus optimal cut

The minimum value on each path is subtracted from each node in the path,
up till the point where we obtain a cut that separates S from 7.
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Min-cut versus optimal cut

The minimum value on each path is subtracted from each node in the path,
up till the point where we obtain a cut that separates S and 7.

The set of saturated nodes(min-cut) is exactly the optimal cut.

Barcelona June 2013 39



Suprema generated energies
(Soille-Grazzini)

e The values of w(S) are supposed to increase as going up in the hierarchy.
The value at node S is maz f(S) — minf(.5).

e Node S is kept when w(S) < k. (here k = 20)

The optimal cut is the union of the largest remaining nodes.

Barcelona June 2013 40
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V-generated energies (Akcay-Aksoy)

w(S) <w(S*) when S C S* and f(S) < f(S*)

The optimal cut at point x made by the set of all nodes more energetic than
their descendants,

or, when none, by the leave containing .

Barcelona June 2013
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V-generated energies (Akcay-Aksoy)

In this case the optimum s a result of mazximization.

w(S) < w(S*) when S C S* and f(S5) < f(5*)

The optimal cut at point  made by the set of all nodes more energetic than
their descendants,

or, when none, by the leave containing .
Barcelona June 2013 43



Infima generated energies
Ground truth Evaluation

In the next session we have an example that performs composition by suprema
and infima applied to the problem of evaluation of hierarchies by ground truth.

71‘.
GT !

e Local measures: Each class S in H is Class S
e

assigned two radii: wg and ¢,

e Given a hierarchy H and ground truth
. o Min radius of dilation of ground truth
partition G find the partition in H closest to G. contour that covers the contour of S.

— Closest from H — G GT T

— Closest from G — H -

Minimum radius of dilation of the44
contour of S to cover GT within S.
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Composition of V-generated energies

e The weighted supremum w = VA;w; of a family {w;,7 € I}, {\;,7 € I} is
h-increasing (but not the infimum).

e Note that the supremum can express an intersection of criteria

e For example, if in S
- w1(S) = 0 if the luminance range < ky, and wq(S) = 1 if not,
- wa(5) = 0 if the saturation range < ko, and wy(S) = 1 if not,
- w3(S) = 0 if the area of S is > k3, and w3(S) = 1 if not,

then the energy Vw;(S) = 0 when S is not too small and rather constant
in luminance and saturation.

Barcelona June 2013
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4.

5. Climbing families of energies.

Plan

Barcelona June 2013
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Climbing families of energies

e The energy often depends on a positive parameter, i.e. {w*, A > 0}. Is it
then possible to order the optimal cuts according to A7

e The family {w*, A\ > 0} is said to be climbing when:

each w? is climbing (i.e. singular and h-increasing) for any partial
partition 7 of support S we have

A<pu and w?(S) < wM7w) = wh(S) < wh(n)

Proposition: When the family {w*, A > 0} of energies is climbing, then
the optimal cuts increase with A (for the refinement ordering)

Barcelona June 2013 47
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Conclusions

* We replaced the numerical approach

optimal
caasy — partition
by the lattice one
enirgy — Lattice of the N optimal
) ) cuts partition
singularity

which adds a local meaning to the global energy o, (similar to
the uniform convergence versus the simple one).
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Conclusions

* We replaced the variational approach by the axiomatics

Singular and h-Increasing energy = climbing energy

which allows the tast computation

climbing energy  ~  optimal cut in one pass

* We introduced the climbing families of energies
Which results 1n

Climbing Hierarchies
families — of
of energies optimal partitions

Barcelona June 2013
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.... A study by my student

Barcelona June 2013
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Problem context

1. Developing the theory of optimal cuts.
(Pattern Recognition Letters Journal 2013)

2. Ground truth energies (ISMM 2013)
3. Saliency transforms (SSVM 2013)
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Ground truth: Evaluation of Hierarchies

omemdsz

Input Image - Go
Hand drawn ground truth by multiple users or experts for each image.
No inclusion ordering assumed in the ground truths.
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Problems

1. Given a hierarchy H and ground truth partition
G find the partition in H closest to G.

1. ClosestfromH->G
2. Closest from G ->H

2. Compare any hierarchy H with multiple ground
truth partitions of the same image

3. Compare any two hierarchies H1, H2, with
respect to a common ground truth partition G



Hausdorff distance and associated
problems

dy (X, Y) = max {SupmeX innyY d(.ﬁC, y)a SUPycy infaf:EX d(l‘, y)}

i.e. smallest disc dilation of X that contains Y and of X to contain Y

- Global Measure
- Large variations when object are
asymmetric w.r.t each other




Local Hausdorff distances

e local measures: Each GT ge
class Sin H is assigned 2 [uasss \
radii: wa, 0 wa
* BOth are h-inCI"eaSing minimum radius of dilation of ground truth

contour that covers the contour of S.

energies -

* Local optimization to
obtain a globally optimal
solution

minimum radius of dilation of the contour
of S to cover GT within S.
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we Energy at various levels of H
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6. Energy at various levels of H

Barcelona June 2013
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Problems

1. Given a hierarchy H and ground truth partition
G find the partition in H closest to G.

1. ClosestfromH->G
2. Closest from G ->H

2. Compare any hierarchy H with multiple ground
truth partitions of the same image

3. Compare any two hierarchies H1, H2, with
respect to a common ground truth partition G

Barcelona June 2013 12



Optimal Cuts

War2 Ocrs Ware + Ocra
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Optimal Cuts

B Lo

= o : <,

Initial Image

ammm———

wGT'T HGT'T
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Problems

1. Given a hierarchy H and ground truth partition
G find the partition in H closest to G.

1. Closest fromH->G
2. Closest from G ->H

2. Compare any hierarchy H with multiple ground
truth partitions of the same image

3. Compare any two hierarchies H1, H2, with
respect to a common ground truth partition G

Barcelona June 2013 15



Composition of ground truths:

GT5 2 GT5=GT5 1+ GT5 2

g1 gzr

The distance function of the union(sum]) is the inf of the distance functions



Composition of ground truths:

Warsa + Barsa Wars arhioflams 2013 inf(wGT5_1 + Ogrs1, Wars.o + @7GT5_2)



Problems

1. Given a hierarchy H and ground truth partition
G find the partition in H closest to G.

1. Closest fromH->G
2. Closest from G ->H

2. Compare any hierarchy H with multiple ground
truth partitions of the same image

3. Compare any two hierarchies H1, H2, with
respect to a common ground truth partition G

Barcelona June 2013 18



Global Precision-Recall Energies

The two half distances yield two local and then two global energies:

* Precision (P) : How close is on average the ground truth to the class (G->S)
* Recall (R) : How close is on average the Class contour to the Ground truth (S->G)

1 b 21: ; mEe(Si)(l — g(x)).S;(x)dx
56(5) = 55 [ atayis 2N Si|
~ 1 1 .
6(8) = g [ o(w.08)ds i Joco(1— g5, (2))dz
GNS R—
Gns ZZ_; ~ G
Local dissimilarity measure Counterpart Global similarity measures
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Comparing Hierarchies (saliencies)
_with Precision-recall similarity measures

e
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Comparing Hierarchies (saliencies)
with Precision-recall similarity measures

Image UCM Cousty Cousty
25098 random random

Precision 4.4 0.27 0.09
energy
Recall 3.9 0.28 0.16 0.10
energy

Integrals from PR equations expressed per 1000 pixels in
the image



Problem context

1. Developing the theory of optimal cuts.
(Pattern Recognition Letters Journal 2013)

2. Ground truth energies (ISMM 2013)
3. Saliency transforms (SSVM 2013)

Barcelona June 2013
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Ground truth: Evaluation of Hierarchies

omemdsz

Input Image - Go
Hand drawn ground truth by multiple users or experts for each image.
No inclusion ordering assumed in the ground truths.

Barcelona June 2013 23



A problem: Transforming hierarchies

e (lassically the Ground truth is a model to evaluate
a given hierarchy of segmentations H.

e But conversely could the ground truth be used to modity
and improve the hierarchy itself 7

e If a hierarchy is characterized by its saliency s, how to
synthesize a new saliency that incorporates the
ground truth?

e Can we generate a hierarchy based on the proximity
to the ground truth?

Barcelona June 2013 24



Representations of Hierarchies:
Saliency function

1. Weighting function associated with the
edges between classes of hierarchy H.

2. For a given edge, this function,
constant along the edge, is the level of
H when the edge disappears.

3. Clearly, a distribution of arbitrary
weights on the edges may not be saliency.
It is also required that by removing one
edge one still maintains a partition, i.e.
that one does not create pending edges.

Saliency
Ultrametric contour Map (UCM)

Barcelona June 2013 25



Introducing an external function

i g maz(g) — g
Saliency Ground truth distance function

Inverted distance function
Barcelona June 2013 26



Introducing an external function

[ ]
0 PO o T S |
s B
s max(g) — g ¢ =s+maz(g) — g
Saliency Inverted distance function Similarity Function
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Introducing an external function

s max(g) — g ¢ =s+maz(g) — g

Saliency Inverted distance function Similarity Function
Barcelona June 2013 28



Binary Class Opening

Given a finite set of simple arcs P(Ep) in 2D space E, we define
v P(Eo) — P(Eo)

v(X) reduces each set of arcs X € P(FEp) to the closed contours it may
produce.

Theorem the operation v : P(Ey) — P(Ep) is an opening.




Numerical (grayscale) class opening

The numerical extension of ~ the class opening, holds now on a numerical
function ¢ on the edges of the leaves.
Xi(¢) = ¢ > t, and we define the numerical opening v(¢) by its level sets

Xi[v(w)] by putting

Xi[v(9)] = v[Xe(e)], t>0.

When ¢ spans the class of all positive functions, then ~(y) pro-
duces all possible saliencies.

a b C b b C C
d e f S1| e | S3 S1| e f f
g | h i h h | i
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Properties of class opening |

Let g; and g» be two positive functions on R? or Z?, then:

i) v(g1) (resp. v(g2)) is the largest saliency under g; (resp. g2);

ii) v(g1) Vv(g2) is the largest saliency whose value at each edge is under that
of 7(g1) or ¥(g2);

iii) if g1 ® go denotes an operation from G x G — G, such as +, —, X, =+, V,or
A, then v(g1 ® go) is the largest saliency under g; ® go and in particular,

(g1 V g2) < (g1 + g2)

In all cases the resulting saliency is unique.
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Properties of class opening Il

Given an input saliency function s, and 3 external positive functions g1, g2, g3

s=7(s) <y(s+g1) <v(s+g1+92) <V(s+9g1+92+93)

The same can be applied for the difference operations if the similarity func-
tion representing this difference remains positive (doesn’t introduce zeros).

And similarly for the supremum:

s=7(s) <v(sVg) <Y(sVg1Vg2) <y(sVag1VgaVgs)

All these class openings are ordered thus they form granulometric
semigroups.
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Saliency degeneracy

Class opening () orders ¢ to obtain a saliency, which
corresponds to a hierarchy H.

Degeneracy: Any strictly increasing mapping of the
grey levels ¢’ = a(p), e.g. square root, log, etc., yields
a v(¢’) that generates the same hierarchy H, as y(y) does.
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Evaluating Hierarchies w.r.t
Ground Truth

Ultrametric Contour Map Volume attribute based

watershed flooding
Barcelona June 2013
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Evaluating Hierarchies w.r.t
Ground Truth

in'u)

v(s2+ g
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Volume attribute based

watershed flooding




Composing two external functions
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Composing two external functlons

- el
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Generating Random Hierarchies

Creating random hierarchies using random
permutation matrices as external function
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Hierarchy Fusion: Matching hierar;hies

xﬁpfﬁl 25 S o
_‘-[ B i > L

- . s R -
dy~(s1) = Z d(s1 > t) ds~(s2) = Z d(sy > t)
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Hierarchy Fusion: Matching hierar;hies

A% BB I A e = ] SR
| | 1_( ) /T A “ = =

- . s R -
dy~(s1) = Z d(s1 > t) ds~(s2) = Z d(sy > t)
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s12 = Y(dy>(s2) + 51) s21 = Y(ds>(s1) + 52)
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Conclusion

e Generation of family of saliencies using the Class opening

v(s) by composition with external function g.

Results for ground truth distance function.
e Composition of multiple external functions.

e Fuse two or more hierarchies (saliencies).

Code will be available shortly here: http://www.esiee.fr/~kiranr/HierarchEvalGT.html
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Future work

Develop the converse approach where we interchange
the roles of saliency and the ground truth.

Define energies which yield significant optimal cuts.

Analyse the changes in dendrograms under saliency
transformation.

Introduce conditional saliency transform based on
attributes like volume, area, dynamic.

Use the approach for time varying hierarchies.
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Merci beaucoup pour

e Votre patience

e Et votre attention

Avez vous des questions 7
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